摘要
To the optimal control problem of affine nonlinear system, based on differential geometry theory, feedback precise linearization was used. Then starting from the simulative relationship between computational structural mechanics and optimal control, multiple-substructure method was inducted to solve the optimal control problem which was linearized. And finally the solution to the original nonlinear system was found. Compared with the classical linearizational method of Taylor expansion, this one diminishes the abuse of error expansion with the enlargement of used region.
To the optimal control problem of affine nonlinear system, based on differential geometry theory, feedback precise linearization was used. Then starting from the simulative relationship between computational structural mechanics and optimal control, multiple-substructure method was inducted to solve the optimal control problem which was linearized. And finally the solution to the original nonlinear system was found. Compared with the classical linearizational method of Taylor expansion, this one diminishes the abuse of error expansion with the enlargement of used region.
基金
Project supported by the Aviation Science Foundation of China (No.2000CB080601) the National Defence Key Pre-research Project of the 'Tenth Five-Year-Plan' of China (No.2002BK080602)