期刊文献+

一类具强非线性源的半线性热方程解的性质 被引量:2

Some Properties of the Solutions for a Class of Semilinear Heat Equations with Strong Nonlinear Sources
下载PDF
导出
摘要 讨论了具强非线性源的半线性热方程ut=△u+m in{-ε1,up}边值问题解的性质,证明了TK(uε)在L2(0,T;W10,2(Ω))中关于ε是一致有界的,且(TK(uε))t在L2(Q)中关于ε是一致有界的,从而存在一子列和一可测函数u(x,t)使得当ε→0时,uε→u a.e.于Q.其中TK(r)=m in{K,m ax(r,-K)},Q=Ω×(0,T). This paper is devoted to the study of the semilinear heat equations of the form ut= △t+min { ε^-1, u^p} with strong nonlinear sources. We prove that T;(u') is uniformly bounded in L^2(0, T; W0^1,2(Ω)) with respect to ε, (Tk(u^e)), is uniformly bounded in L^2 (Q) with respect to ε, and that there exists a subsequence of {u^e}, still indexed by ε, such that u^e→u, as ε→0, where u is a measurable function defined on Q. The truncation function is defined to be Tk(r)=min{K, max{r, -k}}, (任意) K〉0, Q=Ω (0, T).
作者 李俊峰
出处 《数学研究》 CSCD 2006年第4期370-374,共5页 Journal of Mathematical Study
关键词 强非线性源 半线性热方程 截断函数 爆破 strong nonlinear sources semilinear heat equations truncation funetions blow up.
  • 相关文献

参考文献8

  • 1Fujita H.On the blowing up of the Cauchy problem for ut=△u+u^1+α.J.Fac.Sci.Univ.Tokyo Sect.Ⅰ,1966,13:109-124.
  • 2Fujita H.On the nonexistence and nonuiqueness theorems for nonlinear parabolic equations.Proc.Symp.Pure Math Part Ⅰ Amer.Math.Soc.1968,18:138-161.
  • 3Hayakawa K.On nonexistence of global solutions of some nonlinear parabolic equations.Proc.Japan Acad.1973,49:503-505.
  • 4Kobayashi K,Sirao T,Tamala H.On the growing up problem for semilinear heat equations.J.Math.oc.Japan,1977,29:407-424.
  • 5Weissler F B.Semilinear evolution equations in Banach spaces.J.Funct.Anal,1979,32:277-296.
  • 6Weissler F B.Local existence and nonexistence for semilinear parabolic equations in Lp.Indiana Univ.J.1980,29:79-102.
  • 7Brezis H,Cazenave T.A nonlinear heat equation with singular initial data.Journal D'Analyse Mathematique,1996,68:277-304.
  • 8Celik C,Zhou Zhengfeng.No Local L^1 Solution for a Nonlinear Heat Equation.Commu.Partial Differential Equations,2003,28:1807-1831.

同被引文献5

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部