期刊文献+

Hahn-Tsai复合材料的非线性杂交应力有限元方法

The nonlinear hybrid stress finite element method for Hahn-Tsai composite materials
下载PDF
导出
摘要 成功建立了Hahn-Tsai复合材料模型的非线性杂交应力有限元方程,采用Newton-Raphson迭代法求解结构的非线性位移方程。在迭代过程中,为了提高计算效率可采用简单迭代法由节点位移求解单元应力场。但是,当载荷增加到一定程度以后,非线性应力场由于循环迭代而无法收敛,显然,一般的加速方法不能解决这种循环迭代的发散问题。因此,本文发展了一种确实有效的非线性应力场迭代新方法,在不增加计算工作量的情况下,不仅极大地提高了收敛速度,而且对于较大载荷也能够很好地收敛,从而解决了大载荷下非线性杂交元方法失败的关键问题。数值算例表明该方法是确实可行的。 The nonlinear hybrid stress finite element method for Hahn-Tsai composite materials is established successfully. The Newton-Raphson iteration technique is employed to solve the displacement nonlinear equations of the structure. To save the computer cost, the element stress field can be computed by the simple iteration method from the nodal displacements. However, the fact is that the simple stress iteration is recurrent so that divergent for the large load. Obviously, the ordinary accelerating techniques cannot overcome this problem of divergence of recurrent iteration. So, a new method of nonlinear stress iteration is derived in this paper. It is useful and the rapidly convergent solution can be obtained without more computer cost. In particular, it also results in the convergent solution for large load. It is the key to the successful nonlinear hybrid finite analysis for the large load. The numerical example shows that the method is effective.
出处 《计算力学学报》 CAS CSCD 北大核心 2006年第6期749-753,共5页 Chinese Journal of Computational Mechanics
基金 中央行动计划专项资金(X01102)资助项目
关键词 非线性杂交应力元 假设应力场 应力场迭代新方法 Hahn-Tsai复合材料模型 nonlinear hybrid stress element assumed stress field new method for stress field iteration Hahn-Tsai composite material model
  • 相关文献

参考文献11

二级参考文献14

  • 1卡得斯图赛H 诸得超等(译).有限元法手册[M].北京:科学出版社,1995.523,537-538.
  • 2Pian T H H. Derivation of element stiffness matrices[J]. AIAA,1964,2(3):576-577.
  • 3Hoa S V, FENG Wei. Hybrid Finite Element Method for Stress Analysis of Laminated Composites[M]. Boston/Dordrecht/London:Kluwer Academic Publihsers,1998.
  • 4HUANG Qian. Modal analysis of deformable bodies with finite degree of deformation freedom-An approach to determination of natural stres modes in hybrid finite elements[A]. In: Chien Wei-zang, Fu Zi-zhi, Eds. Advances in Applied Mathematics & Mechancis in China[C]. IAP,1991,3:283-303.
  • 5FENT Wei, Hoa S V, HUANG Quan. Classification of stress modes in assumed stress fields of hybrid finite elements[J]. International Journal for Numerical Methods in Engineering,1997,40(23):4313-4339.
  • 6H.卡得斯赛. 有限元法手册[M]. 诸得超,傅子智译,北京:科学出版社,1995.
  • 7Saether Erik, Explicit determination of element stiffness matrix in the hybrid stress method[J]. International Journal for Numerical Methods in Engineering,1995,38(15):2547-2571.
  • 8Han J, Hoa S V. A three-dimensional multilayer composite finite element for stress analysis of composite laminates[J].International Journal for Numerical Methods in Engineering,1993,36(22):3903-3914.
  • 9MacNeal R H, Harder R L. A proposed standard set of problems to test finite element accuracy[J]. Finite Element in Analysis and Design,1985,1(1):3-20.
  • 10MacNeal R H. A theorem regarding the locking of tapered four-noded membrane elements [J]. International Journal for Numerical Methods in Engineering,1987,24(9):1793-1799.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部