期刊文献+

中国股票市场ES和VaR的实证比较分析 被引量:6

An Empirically Comparative Analysis Between ES and VaR on China Stock Market
下载PDF
导出
摘要 以我国股票收益率为研究对象,分别在正态分布和非正态稳定分布条件下对ES和VaR的凸性、次可加性和有效性进行了实证比较分析,发现:在非正态稳定分布条件下VaR不满足凸性和次可加性,ES满足凸性和次可加性,在正态分布条件下VaR和ES都满足凸性和次可加性;在两种分布条件下ES的有效性都高于VaR的有效性,而在非正态稳定分布条件下ES的优势更加明显。由于本文的收益率分布拟合检验表明我国的股票收益率服从非正态稳定分布,所以在我国股票市场上ES是比VaR更好的风险度量。 This paper empirically compares ES with VaR from aspects of convexity, subadditivity and validity on condition of normal distribution and non-normal stable distribution on China Stock Market, and finds: ES satisfies convexity and subadditivity but VaR do not on condition of non-normal stable distribution, and both of them satisfy convexity and subadditivity on condition of normal distribution; whether on condition of normal distribution or non-normal stable distribution, ES is more effective than VaR, and the problem of underestimating risk of VaR is more serious on condition of nonnormal stable distribution. Because the distribution of rate of return on China Stock Market is non normal stable, ES is a better risk measurement than VaR on China Stock Market.
作者 徐绪松 王频
出处 《技术经济》 2006年第12期1-6,共6页 Journal of Technology Economics
基金 国家自然科学基金(70440003)
关键词 一致性风险度量 VAR ES 正态分布 非正态稳定分布 coherent riskt VaR ES normal distribution non-normal stable distribution
  • 相关文献

参考文献14

  • 1Artzner P, Delbaen F, Eber J-M, Heath D. Thinking Coherently[J]. Risk, 1997, 10(11): 68-71.
  • 2Artzner P, Delbaen F, Eber J-M, Heath D. Coherent Measures of Risk[J]. Mathematical Finance, 1999, 9(3) : 203-228.
  • 3Jorion P-H. Measuring the Risk in Value at Risk[J]. Financial Analysts Journal, 1996, 6(1):47 - 56.
  • 4Jorion P-H. Value at Risk: A New Benchmark for Measuring Derivatives Risk [ M ]. Irwin Profeddional Publishers, New York, 1996.
  • 5Brendan O, Btadley Murad S, Taqqu. Financial Risk and Heavy Tails [ M ]. in "Heavy-tailed distributions in Finance",Svetlozar, T., Racher, editor, North Holland, 2002.
  • 6Uryasev S. Conditional Value-at-Risk.. Optimization Algorithms and Applications [J ]. Financial Engineering News, 2000, 2 (3).
  • 7Pflug G. Some Remarks on the Value at Risk and the Conditional Value at Risk [ M ]. in "Probabilistic Constrained Optimization: Methodology and Applications", Uryasev, S(Ed. ).Kluwer Academic Publishers, Dordreeht,2000.
  • 8Acerbi C, Tasche D. On the Coherence of Expected Shortfall [J]. Journal of Banking & Finance, 2002, 26: 1487-1503.
  • 9Nolan John P. Stable Distributions: Models for Heavy Tailed Data [M]. Birkhauser Boston lne, 2003.
  • 10McCulloeh J H. Simple Consistent Estimators of Stable Distribution Parameters[J ]. Communications in Statistics - Simulations, 1986, 15:1109-1136.

同被引文献58

引证文献6

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部