期刊文献+

渐近概周期Logistic方程解的存在唯一性及其性态

Existence and Uniqueness of Asymptotic Almost Periodicity of Logistic Equation and the chacrachter of the Solution
下载PDF
导出
摘要 研究了 Logistic 方程 dx(t)/dt=r(t)x(t)[1-x(t)/k(t)],扩大了方程中系数r(t),k(t)的范围(由周期函数与概周期函数扩大到渐近概周期函数),得到了此方程渐近概周期解的存在唯一性的充分条件,在此基础上讨论了解的吸引性与稳定性。 The work deals with the existence and uniqueness of asymptotic almost periodic solution of Logistic equation where are asymptotic almost periodic functions and sufficient conditions are obtained for the existence and uniqueness of the asymptotic almost periodic solution of this equation in the case of enlarging the scope of the coefficients (enlarged to asymptotic almost periodic functions ).Base on this the stability,attractability of the solution is discussed
作者 张克玉
出处 《长江大学学报(自科版)(上旬)》 CAS 2006年第4期11-13,共3页 JOURNAL OF YANGTZE UNIVERSITY (NATURAL SCIENCE EDITION) SCI & ENG
关键词 渐近概周期 方程 存在 唯一性 一致渐近稳定 asymptotic almost periodicity Logistic equation uniqueness and existence stability
  • 相关文献

参考文献4

二级参考文献12

  • 1陈兰荪,数学生态学模型与研究方法,1988年
  • 2朱思铭,中山大学学报,1987年,4卷,93页
  • 3崔启武,生态学报,1982年,2卷,4期,403页
  • 4张筑生,微分动力系统原理,1987年
  • 5Tang Hengsheng,Ann Differ Equ,1996年,12卷,3期,335页
  • 6Joseph W H So,Hokkaido Math J,1995年,24卷,269页
  • 7Meng Fan,Ke Wang.Optimal harvesting policy for single population with periodic coefficients[J].Math Biosci,1998,152(2):165-177.
  • 8Coleman B D.Nonautonomous logistic equation as models of the adjustment of populations to environmental change[J].Math Biosci,1979,45(3-4):159-173.
  • 9Gopalsamy K. Exchange of equilibrium two species Lotka-Volterra competition models[J]. J Austral Math,1982. Soc Ser B. 24:160-170.
  • 10Gopalsamy K. Global asymptotic stability in a periodic Lotka-Volterra system[J]. J Austral Math, 1985, Soc Ser, B, 27:65-70.

共引文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部