期刊文献+

一种新的求解非线性系统周期解方法 被引量:4

A New Periodic Solution of Nonlinear Dynamics
下载PDF
导出
摘要 本文利用切比雪夫多项式的若干良好性质,对非自治强非线性动力系统进行分析。将状态矢量在主周期上先展开谐波级数的形式,再将各谐波展开为切比雪夫多项式的形式,从而将求周期解的问题转变为非线性代数方程组的求解问题,得出一种可以方便、迅速地获得近似周期解的解析方法。此方法不依赖于小参数假设,可以用于分析强非线性问题和高维问题,而且对参数激励系统同样有效。以Duffing系统周期解的计算为例,通过与标准谐波平衡方法和四阶Runge-Kutta数值积分结果比较,说明此方法的有效性。 A heteronomy strong nonlinear dynamics system was analyzed by using the good properries Chebyshev polynomials. The state vectors were expanded in terms of the harmonic progressions over principal period. Each harmonic progression was expanded in terms of Chebyshev polynomials. Such an expansion reduces the original problern of getting periodic solution to a set of nonlinear algebraic equations from which the solution in one period can be obtained. This new method does not need to be based on the assumption of small parameters and can be used to analyze strong nonlinear problems. It is also convenience for the analysis of systems with periodical varying coefficients or high dimensional problems. As illustration example, the analytical results of Dulling equation was compared with those obtained via a Runge-Kutta integration algorithm and the standard Harmonic Balance Method. The results indicate that the suggested approach is extremely accurate and effective.
作者 周桐 徐健学
出处 《力学季刊》 CSCD 北大核心 2006年第4期661-667,共7页 Chinese Quarterly of Mechanics
基金 中物院项目基金(2003-4210506-4-02) 国家自然科学基金(重大19990510)
关键词 切比雪夫多项式 强非线性 周期解 解析方法 Chebyshev polynomials strong nonlinear periodic solution analytic method
  • 相关文献

参考文献13

二级参考文献36

  • 1陈树辉,黄建亮,佘锦炎.轴向运动梁横向非线性振动研究[J].动力学与控制学报,2004,2(1):40-45. 被引量:17
  • 2黄彪.一类多自由度非线性动力系统周期解的定性分析[J].应用力学学报,1995,12(2):40-46. 被引量:1
  • 3曾晓东,齐翔林,汪云九.求解极限环的谱展开法[J].计算物理,1997,14(2):227-232. 被引量:3
  • 4黄维章.多重网格法和中参数化多重网格连续方法(学位论文)[M].中国科学院应用数学研究所,1989,6..
  • 5康羽.求微分方程周期解的最优控制算法及其分析(硕士论文)[M].中国科学院应用数学研究所,1993.1.
  • 6张锁春.一种最优控制数值方法[J].计算物理,1988,5:443-443.
  • 7Wickert JA, Mote CD. Current research on the vibration and stability of axially-moving materials. Shock and Vibration Digest, 1988, 20(5): 3~13.
  • 8Pellicano F, Vestroni F. Nonlinear dynamics and bifurcations of an axially moving beam. Journal of Vibration and Acoustics, 2000, 122:21~30.
  • 9Wickert JA, Mote Jr CD. Classical vibration analysis of axially moving continua. Journal of Applied Mechanic, 1990,57:738~744.
  • 10Wickert JA. Non-linear vibration of a traveling tensioned beam. International Journal of Non-Linear Mechanics,1992, 27(3): 503~517.

共引文献104

同被引文献88

引证文献4

二级引证文献111

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部