期刊文献+

差分进化微粒群优化算法—DEPSO 被引量:5

A Differential Evolution Particle Swarm Optimizer—DEPSO
下载PDF
导出
摘要 微粒群优化算法是一种新的进化计算技术,具有良好的优化性能,但是对于高维多模态函数,因进化后期微粒多样性的降低导致算法早熟收敛。文章提出的差分进化微粒群优化算法(DEPSO),拓宽了微粒信息传递的途径,增加了微粒的多样性,保证了算法的全局收敛。实验结果表明,DEPSO比PSO有更好的性能。 Particle swarm optimization algorithm is a new evolutionary computation technology and exhibits good performance on optimization.However the algorithm,to the highly dimentions and highly muti-modal function,will fall into premature covergence due to the decrease of poputation diversity in the evolution later.This paper intoduce a differential evolution particle swarm optimizer(DEPSO) which enlarge the tansfering approach of the particles information and increase the particles diversity and guarantee global covergence. Experiments on benchmark functions shows DEPSO outperform basic PSO.
作者 贺安坤 苗良
出处 《微计算机信息》 北大核心 2006年第12X期284-286,共3页 Control & Automation
基金 国家863计划子课题资助项目(项目编号:2003AA209050-5)
关键词 差分进化微粒群优化算法 多样性 收敛性 differential evolution particle swam optimizer,diverslty,eovergence
  • 相关文献

参考文献5

  • 1J.Kenndy,R.Eberhart.Particle swarm Optimization.In:Proc IEEEE Iht Conf on Neural Network,1995:1942-1948.
  • 2Y.Shi and R.C.Eberhart.A modified particle swarm optimizer.In Proceedings of the IEEE International Conference on Evolutionary computation,pages 69-73.IEEE Press,Piscataway,USA,1998.
  • 3Maurice Clerc.The swarm and the queen:Towards a deterministic and adaptive particle swarm optimization.In Peter J.Angeline,Zbyszek Michalewicz,Marc Schoenauer,XinYao,and Ali Zalzala,editors,Proceedings of the Congress of Evolutionary Computation,volume 3,pages 1951-1957,Mayflower Hotel,Washington D.C.,USA,6-9 July 1999.IEEE Press.
  • 4R.Storn and K.Price,Differential evolution.a simple and efficient adaptive scheme for global optimization over continuous spaces,Journal of Global Optimization 11 (1997),341.359.
  • 5厉虹,张冰.粒子群优化算法在Acrobot平衡控制中的应用[J].微计算机信息,2006,22(03S):80-82. 被引量:7

二级参考文献4

  • 1曹锐,李宏光,李昊阳.一类混杂系统Petri网模型的优化算法的研究[J].微计算机信息,2005,21(1):27-28. 被引量:27
  • 2Spong M., The swing up control problem for the acrobot, IEEE Control Systems Magazine, 1995. 15(1): 49-55.
  • 3Spong M., Underactuated Mechanical Systems. Control Problems in Robotics Automation. Germany, Springer-Verly 1998. 105-150.
  • 4Kenndy J, Eberhart R.C. Particle Swarm Optimization. In: Proe.IEEE Int 1. Conf. on Neural Networks, IV. Piscataway, N J: IEEE Service Center, 1995, 1942-1948.

共引文献6

同被引文献47

引证文献5

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部