期刊文献+

乙烯裂解炉内燃烧、传热与裂解反应的模拟计算 被引量:8

NUMERICAL SIMULATION ON COMBUSTION,HEAT TRANSFER AND NAPHTHA PYROLYSIS REACTIONS IN ETHYLENE CRACKING FURNACE
下载PDF
导出
摘要 为了揭示SL-Ⅱ型乙烯裂解炉炉膛内燃烧与其反应管内石脑油裂解反应历程,对炉膛内燃烧、传热与反应管内裂解反应进行了综合模拟计算,得到了炉膛内烟气速度、组分分布、烟气温度分布及反应管内裂解反应历程。应用非预混燃烧模型及DO辐射传热模型进行炉膛内燃烧、传热的计算;采用分子反应模型预测反应管内石脑油裂解反应的产品分布。结果表明,底部烧嘴的高速射流在炉膛下部产生回流区,对于炉膛下部烟气温度分布的均匀性至关重要;另外,烧嘴的高速射流引起炉膛内组分分布的较大变化,从而影响烟气温度分布。通过裂解产品及反应管壁温度模拟结果与烯烃厂测定数据的比较,证明了模拟计算的可行性,同时得出反应管壁高温区在管长的16~20m处。 To investigate the process of combustion in SL-Ⅱ cracking furnace and pyrolysis reaction of naphtha in tubular reactors, integrated numerical simulation on combustion, heat transfer and pyrolysis reactions was carried out and velocity, components concentration, and temperature distribution of flue gas and progress of pyrolysis reactions were obtained. Nonpremixed combustion model and DO radiation model were applied for computation of combustion and heat transfer in the furnace. Molecular reactions model was applied for pyrolysis reactions and predicting products yield. It was shown that the high velocity of bottom burners jet flow resulted in flue gas circumfluence, which played an important role in uniform of flue gas temperature in the bottom of the furnace. In addition, jet flow of bottom burners brought variation of components concentration and influenced temperature distribution of flue gas. Compared with measured data for products yield and temperature of tubeskin in olefin plant, the feasibility of simulation was indicated, and high temperature zone of tubeskin was located in 16-20 m along tubular reactor.
出处 《石油学报(石油加工)》 EI CAS CSCD 北大核心 2006年第6期63-68,共6页 Acta Petrolei Sinica(Petroleum Processing Section)
关键词 裂解炉 裂解反应 烧嘴 模拟 cracking furnace pyrolysis reactions burners simulation
  • 相关文献

参考文献9

  • 1Heynderickx G J,Oprins A J M,Marin G B,et al.Three-dimensional flow patterns in cracking furnaces with longflame burners[J].AIChE Journal,2001,47(2):388-399.
  • 2Niaei A,Towfighi J,Sadrameli S M,et al.The combined simulation of heat transfer and pyrolysis reactions in industrial cracking furnaces[J].Applied Thermal Engineering,2004,24(14/15):2251-2265.
  • 3Detemmerman T,Froment F.Three dimensional coupled simulation of furnaces and reactor tubes for the thermal cracking of hydrocarbons[J].Reu Inst Fr Pet,1998,53(2):181-194.
  • 4Oprins A J M,Heynderickx G J.Calculation of three-dimensional flow and pressure fields in cracking furnaces[J].Chemical Engineering Science,2003,58(21):4883-4893.
  • 5Heynderickx G J,Cornelis G G,Froment G F.Circumferential tube skin temperature profiles in thermal cracking coils[J].AIChEJournal,1992,38(12):1905-1912.
  • 6Heynderickx G J,Froment G F.Simulation and comparison of the run length of an ethane cracking furnace with reactor tubes of circular and elliptical cross sections[J].Ind Eng Chem Res,1998,37(3):4-22.
  • 7Sundaram K M,Froment G F.Two dimensional model for the simulation of tubular reactors for thermal cracking[J].Chemical Engineering Science,1980,35(1/2):364-371.
  • 8张红梅,王宗祥.轻质油裂解炉反应管的二维数学模型[J].石油学报(石油加工),1995,11(4):68-77. 被引量:22
  • 9Kumar P,Kunzru D.Modeling of naphtha pyrolysis[J].Ind Eng Chem Proc Des Dev,1985,24(3):774-782.

二级参考文献8

共引文献21

同被引文献172

引证文献8

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部