期刊文献+

用特征正交分解的桥墩处水波动模拟

Simulation for Stochastic Wave of Water Particles Around Bridge Piers by Using Spectral Representation Method with Proper Orthogonal Decomposition(POD)
下载PDF
导出
摘要 定义了随机向量过程的特征正交分解,推导了特征正交分解型谱表示法的模拟表达式,该算法可用FFT加速。结合桥墩基础处不同深度水质点波动速度和速度的功率谱密度矩阵仅具有一个独立特征值的特点,推导了随机波动模拟的简化计算公式,简化公式具有较高的计算效率。通过对一个实际桥梁桩基础不同深度处的水质点随机波动速度进行模拟,验证了所提方法的有效性。 Proper orthogonal decomposition (POD) of random multivariate processes was defined firstly. Then, a series of practical expression of the spectral representation method on the basis of POD was given, which can be accelerated by FFT, It can be shown that the power spectral density matrix of velocities and/or accelerations process of water particles in stochastic waves had only one non-nil independent eigenvalue and eigenvector, As a consequence, the equations of the simulation of stochastic wave could be simplifiod. Compared with original spectral representation method, higher computation efficiency might be attained. Finally, by simulation of stochastic waves around an actual bridge pier foundation, the algorithm proposed in this paper was verified.
出处 《武汉理工大学学报》 EI CAS CSCD 北大核心 2006年第12期102-105,共4页 Journal of Wuhan University of Technology
基金 交通部西部交通建设科技项目(200431800024)
关键词 桥墩基础 波动模拟 谱表示法 特征正交分解(POD) bridge pier foundation stochastic wave simulation spectral representation method proper orthogonal decomosition
  • 相关文献

参考文献6

  • 1Chen X,Kareem A.Proper Orthogonal Decomposition-based Modeling,Analysis,and Simulation of Dynamic Wind Load Effects on Structures[J].Journal of Engineering Mechanics,2005,131(4):325-339.
  • 2Deodatis G.Simulation of Ergodic Multivariate Stochastic Processes[J].Journal of Engineering Mechanics,1996,122(8):778-787.
  • 3Solari G,Carassale L.Modal Transformation Tools in Structural Dynamics and Wind Engineering[J].Wind and Structures,2000,3(4):221-241.
  • 4Di Paola M.Digital Simulation of Wind Field Velocity[J].Journal of Wind Engineering and Industrial Aerodynamics,1998,74-76(1):91-109.
  • 5Priestley M B.Evolutionary Spectra and Non-stationary Processes[J].Journal of Royal Statistics Society,Series B,1965,27:204-237.
  • 6Di Paola M,Pisano A A.Multivariate Stochastic Wave Generation[J].Applied Ocean Research,1996,18(6):361-365.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部