期刊文献+

基于支持向量异常检测算法的新故障检测 被引量:1

Novel Fault Detection Based on Support Vector Novelty Detection Algorithm
下载PDF
导出
摘要 对于一个智能故障分类与诊断系统,需要有检测新出现的故障模式的能力。采用一种支持向量异常检测算法,即支持向量数据描述(SVDD),建立已知故障类训练样本的描述模型,并用于检测新的训练中未见的故障类样本。以实测的轴承多种故障类样本为例,结果表明:通过选取合适的算法参数,SVDD对设定的新故障类样本的检测率达88%—100%,同时对已知故障类样本的识别率达83%—94%。 The ability to detect a new fault class can be a useful feature for an intelligent fault classification and diagnosis system. In this paper, a support vector novelty detection algorithm, the support vector data description (SVDD), was adopted to represent known fault class samples, and to detect new fault class samples. The experiments on real multi-class bearing faults data showed that the propesed approach can effectively detect prescribed 'unknown' fault samples with detection rated 88%- 100%, and identify known faults samples with recognition rated 83%-94% via choosing appropriate SVDD algorithm pararneters.
出处 《武汉理工大学学报》 EI CAS CSCD 北大核心 2006年第12期109-112,共4页 Journal of Wuhan University of Technology
关键词 支持向量数据描述 故障诊断 异常检测 support vector data description (SVDD) fault diagnosis novelty detection
  • 相关文献

参考文献7

  • 1Markou M,Singh S.Novelty Detection:A Review-part 1:Statistical Approaches[J].Signal Processing,2003,83 (12):2481-2497.
  • 2Markou M,Singh S.Novelty Detection:A Review-part 2:Neural Network Based Approaches[J].Signal Processing,2003,83 (12):2499-2521.
  • 3Schlkopf B,Platt J C,Shawe-Taylor J,et al.Estimating the Support of a High-dimensional Distribution[J].Neural Computation,2001,13(7):1443-1471.
  • 4Tax D M J,Duin P W.Support Vector Domain Description[J].Pattern Recognition Letters,1999,20(11-13):1191-1199.
  • 5Tax D M J,Duin R P W.Support Vector Data Description[J].Machine Learning,2004,54:45-66.
  • 6吴传生,梁劲松.振动测试信号处理的小波变换方法[J].武汉理工大学学报,2002,24(12):69-71. 被引量:4
  • 7Tax D M J.DD_tools,the Data Description Toolbox for Matlab (Version 1.4.1)[EB/OL].(2005-12-20)[2006-04-25].http://www-ict.ewi.tudelft.nl/~davidt/index.html,

二级参考文献1

共引文献3

同被引文献21

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部