期刊文献+

基于代沟信息的可变种群规模遗传算法 被引量:1

Genetic Algorithm with Varying Population Size Based on Generational Gap Information
下载PDF
导出
摘要 针对遗传算法种群规模难以估计的问题,提出了一种基于代沟信息的可变种群规模遗传算法。利用相邻几代群体间的极优解差异信息,在遗传算法发生早熟现象时根据逻辑斯蒂模型来改变种群规模,能以较小的计算代价获得与其它遗传算法性能相近的解。实验结果证明了算法的有效性。 Focusing on the problems existing in some genetic algorithms that population size is difficult to estimate or compute, a genetic algorithm with varying population size based on generational gap information (SAVPGA) is proposed. By using the information of local optimal solutions difference among some neighbor generation, SAVPGA can obtain approximate solutions with less computational cost by varying population size based on logistic model when premature convergence occurs. The computing of some examples is made to show that the algorithm is useful.
作者 周鹏
出处 《湖北汽车工业学院学报》 2006年第3期47-49,共3页 Journal of Hubei University Of Automotive Technology
基金 湖北省教育厅科学技术研究项目(B200623002)
关键词 遗传算法 种群规模 代沟信息 计算代价 genetic algorithm population size generational gap information computational cost
  • 相关文献

参考文献2

  • 1Arabas J, Michalewics Z, Mulawka J, GAVaPS-a Gentic Algorithm with Varying Population Size [A]. IEEE Service Center. Proceedings of the First IEEE Intmational Conference on Evolutionary Computation [C]. Piscataway:NJ,1994. 73-78.
  • 2徐晓华,陈崚,陈宏建.可变种群规模的遗传算法[J].系统仿真学报,2006,18(4):870-872. 被引量:17

二级参考文献15

  • 1Holland J H.Adaptation in Nature and Artificial Systems[M].University of Michigan Press,1975,MIT Press,1992.
  • 2Melanie M.An Introduction to Genetic Algorithms[M].MIT Press,Cambridge,MA,1999.
  • 3Petridis V,Kazarlis S,Bakirtzis A.Varying Fittness Function in Genetic Algorithms Constrained Optimization:The Cutting Stock and Unit Commitment Problems[J].IEEE Transaction on SMC Part B:Cybernetics (S1083-4419).1998,28(5):629-639.
  • 4Shaunna M,Tom L,Abdulla H.A Genetic Algorithm Environment for Star Pattern Recognition[J].Journal of Intelligent and Fuzzy Systems (S1064-1246).1998,6(1):3-16.
  • 5Bhandarkar S M,Zhang H.Image Segment Using Evolutionary Computation[J].IEEE Transactions and Evolutionary Computation (S1089-778X).1999,3(1):1-21.
  • 6Michalewicz Z.Genetic Algorithms + Data Structures = Evolutionary Programs[M].3^rd ed.New York:Springer Verlag,1996.
  • 7Goldberg D E,Deb K,et al.Rapid,Accurate Optimization of Difficult Problems Using Genetic Algorithms,IlliGAl[R].Technical Report No.93003,University of Illinois at Urbana-Champaign,1993.
  • 8Grefenstette J J.Optimization of Control Parameters for Genetic Algorithms[J].IEEE Transactions on Systems,Man,and Cybernetics (S0018-9472).1986,16(1):122-128.
  • 9Goldberg D E.Optimal Initial Popolation Size for Binary-Coded Genetic Algorithms[R].TCGA Report No.85001,Tuscaloosa,University of Alabama,1985.
  • 10Goldberg D E.Sizing Populations for Serial and Parallel Genetic Algorithms[C]//Proceedings of the 3rd International Conference on Genetic Algorithms,Morgan Kaufmann Publishers,San Mateo,CA,1989,70-79.

共引文献16

同被引文献33

引证文献1

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部