期刊文献+

基于最近邻居选择、信息素动态更新和局部启发搜索的蚁群算法 被引量:1

ACO Algorithm Based on the Nearest Neighbor Node Choosing, Dynamic Pheromone Updating and Local Searching
下载PDF
导出
摘要 文章使用最近邻居选择、信息素动态更新和局部启发搜索法对MMAS算法进行优化,得出NDLACO算法.此算法运用于解CVRP问题时,取得了较好的效果.在关于参数值的问题上取得了一定的成效,也有效地解决了蚁群算法的收敛过快和早熟、停滞问题. Although Ant Colony Optimization (ACO) algorithm has solved many NP-hard problems successfully, some parameters (α,β,ρ) must be changed for the sake of getting optimal results when different problems are solved. This paper optimizes MMAS by using the strategies of the nearest neighbor node choosing, dynamic pheromone updating and local searching and obtains NDLACO algorithm, which shows some advantages in dealing with some instances of CVRP, parameters, and ACO's shortcomings such as its fast convergence and stagnation.
出处 《南通大学学报(自然科学版)》 CAS 2006年第4期71-76,共6页 Journal of Nantong University(Natural Science Edition) 
关键词 蚁群算法 NDLACO CVRP ant colony algorithm NDLACO capacitated VRP
  • 相关文献

参考文献13

  • 1吴斌,史忠植.一种基于蚁群算法的TSP问题分段求解算法[J].计算机学报,2001,24(12):1328-1333. 被引量:247
  • 2[2]Dorigo M.Optimization,learning,and natural algorithms[D].Ph.D.Thesis,Dip.Elettronica,Politecniso di Milano,Italy,1992.
  • 3[3]Dorigo M,Caro G Di,Gambardella L M.Ant algorithms for distributed discrete optimization[J].Artificial Life,1995(5):137-172.
  • 4[4]Dorigo M,Maniezzo V,Colorni A.Positive feedback as a search strategy[R].Dip.Elettronica,Politecnico di Milano,Italy,1991.
  • 5[5]Dorigo M,Maniezzo V,Colorni A.The ant system:optimization by a colony of cooperating agents[J].IEEE Trans.Syetem Man Cybernet,1996,26B:29-42.
  • 6[6]Dorigo M,Caro G Di.The ant colony optimization metaheuristic[J].New Ideas in Optimization,1999:11-32.
  • 7[7]Bullnheimer B,Hartl R F,Strauss C.A new rank based version of the ant system-a computational study[J].Central Europen J.Oper.Rea.Econom,1999(7):25-38.
  • 8[8]Marco Dorigo,Vittorio Maniezzo,Alberto Colorni.The ant system:Optimization by a colony of cooperating agents[J].IEEE Transactions on Systems Man and Cybernetics,1996,26(01):1-13.
  • 9[9]Stutzle T,Hoos H H.MAX-MIN ant system amd local search for the traveling salesman problem[C]//IEEE Int'l Conf.On Evolutionary Computation.:IEEE Press,2001.
  • 10吴庆洪,张纪会,徐心和.具有变异特征的蚁群算法[J].计算机研究与发展,1999,36(10):1240-1245. 被引量:306

二级参考文献12

共引文献650

同被引文献10

  • 1Kukkonen S, Deb K. Improved pruning of non- dominated solutions based on crowding distance for hi-objective optimization problems[C]//Evolutionary Computation, 2006. CEC 2006. IEEE Congress on, 2006:1179-1186.
  • 2Chen M R, Lu Y Z. A novel elitist multiobjective optimization algorithm : Multiobjecti extremal optimization [J]. European journal of Operational Research, 2008,188 : 637- 651.
  • 3Penev K, Littlefair G. Free search--A comparative analysis[J]. Information Sciences, 2005, 172: 173- 193.
  • 4Knowles J D, Corne D. Approximating the non- dominated front using the pareto archived evolution strategy [J ]. Evolutionary Computation, 2000,8 (2) : 149-172.
  • 5Coello C A C,Pulido G T,Lechuga M S. Handling multiple objectives with particle swarm optimization [J]. IEEE Transactions on Evolutionary Computation,2004,8 (3) : 256-279.
  • 6Deb K, et al. A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ[J]. IEEE Transac- tions on Evolutionary Computation, 2002,6:182-197.
  • 7Zitzler E, Thiele L. Multiobjective evolutionary algorithms a comparative case study and the strength pareto approach [J]. IEEE Transactions on Evolutionary Computation, 1999,3 : 257 - 271.
  • 8周晖,李丹美,邵世煌,袁从明.一种新的群集智能算法——自由搜索[J].东华大学学报(自然科学版),2007,33(5):579-583. 被引量:17
  • 9周晖,李丹美,徐晨,邵世煌,袁从明.基于粗细粒交叉的搜索算法[J].控制与决策,2008,23(9):1068-1072. 被引量:4
  • 10周晖,徐晨,邵世煌,李丹美.自适应搜索优化算法[J].计算机科学,2008,35(10):188-191. 被引量:8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部