摘要
给出了一类一阶非线性微分方程:y′=p(x)y+q(x)yμ+r(x)+n∑i=2fi(x)y′的较为广泛的一个封闭可积条件,该条件推广和统一了文献1中的定理1和定理2,特别指出近年来关于著名的Riccati方程和Abei方程可积性的一批最新结果都是它的特例。
The paper is sufficient for first order nonlinear differential equation of the 1 st kind y′=(x)y+q(x)y^u+r(x)+^n∑i=2fi(x)yi to be closed integrability. It generalizes and unifies theorem 1 and theorem 2 in the literature[ 1 ], and explains that some latest results of integrable for wellkown Abel equation and Riccati rquation are special cases of its outcome,
出处
《石河子大学学报(自然科学版)》
CAS
2006年第5期640-643,共4页
Journal of Shihezi University(Natural Science)
关键词
一阶非线性微分方程
RICCATI方程
Abei方程
可积
初等解
firsts order nonlinear differential equation
Abel equation
Riccati equation
integrability
elementary solution