期刊文献+

Synthesis of SrAl_2O_4:Eu^(2+),Dy^(3+) phosphors by the coupling route of microemulsion with coprecipitation method 被引量:2

Synthesis of SrAl_2O_4:Eu^(2+),Dy^(3+) phosphors by the coupling route of microemulsion with coprecipitation method
下载PDF
导出
摘要 Nano-sized SrAl2O4:Eu^2+,Dy^3+ phosphors with good monodispersity and narrow size distribution were synthesized by the coupling of water-in-oil (W/O) microemulsion with coprecipitation method. The phase composition, morphology, crystallinity, excitation spectra, emission spectra, and afterglow decay of SrAl2O4:Eu^2+,Dy^3+ nanophosphors were measured. It was found that the amount of surfactant that was used had an important effect on the shape and average size of the phosphor particles. SrAl204 phase of the phosphors showed an increase with the increase in calcination temperature. When the calcination temperature reached 1150℃, the fine crystal of SrAl2O4 was formed and the long afterglow luminescence could be obviously observed. In comparison with the samples prepared by the high-temperature solid-state method, the calcination temperature showed an obvious decrease and a dear blue shift occurred in the excitation and emission spectra of the sample. The afterglow time could be more than 8 h. Nano-sized SrAl2O4:Eu^2+,Dy^3+ phosphors with good monodispersity and narrow size distribution were synthesized by the coupling of water-in-oil (W/O) microemulsion with coprecipitation method. The phase composition, morphology, crystallinity, excitation spectra, emission spectra, and afterglow decay of SrAl2O4:Eu^2+,Dy^3+ nanophosphors were measured. It was found that the amount of surfactant that was used had an important effect on the shape and average size of the phosphor particles. SrAl204 phase of the phosphors showed an increase with the increase in calcination temperature. When the calcination temperature reached 1150℃, the fine crystal of SrAl2O4 was formed and the long afterglow luminescence could be obviously observed. In comparison with the samples prepared by the high-temperature solid-state method, the calcination temperature showed an obvious decrease and a dear blue shift occurred in the excitation and emission spectra of the sample. The afterglow time could be more than 8 h.
出处 《Rare Metals》 SCIE EI CAS CSCD 2006年第6期615-619,共5页 稀有金属(英文版)
关键词 long afterglow phosphors MICROEMULSION coprecipitafion rare earths long afterglow phosphors microemulsion coprecipitafion rare earths
  • 相关文献

参考文献3

二级参考文献30

共引文献57

同被引文献17

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部