期刊文献+

基于流媒体语音关键词识别系统的研究 被引量:1

Study of keyword recognition system for speech based on streaming media
下载PDF
导出
摘要 近年来,关键词检测技术在口语语音和电话语音领域取得了显著的发展,但针对流媒体语音关键词检测的有关文献却很少见,基于这个目的,提出一套针对流媒体关键词检测的系统方案。系统利用WMFSDK从流媒体中提取出解码的语音数据。为了区分集外词和关键词,利用了在线垃圾模型拒绝集外词并且得到多个关键词候选。在关键词确认阶段,把解码过程中得到的基于MAP的词置信度和N-best特征作为特征向量,设计了支持向量机(SVM)分类器。通过实验对SVM方法和传统的Fisher方法进行了比较,研究表明前者的应用效果整体优于后者。 During recent years, Significant progress has been made in keyword spotting (KWS) for spo- ken speech or telephone speech, but little reference is found concerning word spotting in audio data embedded in streaming media. A keyword recognition system scheme is proposed for streaming media based on audio document retrieval. In the system, the decoded audio data was retrieved from Streaming media via Microsoft Windows Media Format Soft Development Kit (WMFSDK). In order to distinguish between out-of-vocabulary (OOV) and vocabulary words, on-line garbage (OLG) model is proposed aiming to reject OOV and obtain keyword candidates. In utterance verification stage, a Support Vector Machine (SVM) classifier is designed whose input feature vectors consisting of the parameters based on the NBest results and the MAP-based word confident measures. Compared with the traditional Fisher method, results show that the former is more effective than the latter.
出处 《北京机械工业学院学报》 2006年第4期47-50,共4页 Journal of Beijing Institute of Machinery
关键词 流媒体 在线垃圾模型 置信度 支持向量机 streaming media on-line garbage model confident measure SVM
  • 相关文献

参考文献9

  • 1Rose R C,Juang B H,Lee C H.A Training Procedure for Verifying String Hypothesis in Continuous Speech Recognition[C].IEEE Transactions on Acoustics,Speech and Signal Processing.Detroit USA:IEEE Press,1995:281-284
  • 2Boulard H,hoore B D,Boite J M.Optimizing Recognition and Rejection Performance in Wordspotting Systems[C].IEEE Transactions on Acoustics,Speech and Signal Processing.Adelaide USA:IEEE Press,1994:373-376
  • 3Microsoft Corporation.Wmformat,(2002-3-19)[2006-10-5].https://wmlicense.smdisp.net/ei0u439/91ac29746/download.asp
  • 4LIU Jun,刘俊,ZHU Xiao-Yan,朱小燕.基于动态垃圾评价的语音确认方法[J].计算机学报,2001,24(5):480-486. 被引量:7
  • 5Evermann G,Woodland P.Large vocabulary decoding and confidence estimation using word posterior probabilities[C].IEEE Transactions on Acoustics,Speech and Signal Processing.Istanbul Turkey:IEEE Press,2000:1655-1658
  • 6Falavigna D,Gretter R,Riccardi G.Acoustic and word lattice based algorithms for confidence scores[C].Proceeding of the International Conference on Spoken Language Processing.Denver USA:IEEE Press,2002:1621-1624
  • 7Wessel F,Schlute R,Macherey K,et al.Confidence measures for large vocabulary continuous speech recognition[C].Proceeding of the International Conference on Spoken Language Processing.Denver USA:IEEE Press,2002:1621-1624
  • 8Niyogi P,Burges C,Ramesh P.Distinctive feature detection using support vector machines[C].IEEE Transactions on Acoustics,Speech and Signal Processing.Phoenix USA:IEEE Press,1999:425-428
  • 9Vapnick V.The Nature of Statistical Learning Theory[M].New York:Springer-Verlag,1995

二级参考文献6

  • 1Zhang Yiying,Proc Int Conference on Spoken Language Processing,1998年,42页
  • 2Mazin G,IEEE Trans Speech and Audio Processing,1997年,5卷,3期,266页
  • 3Juang Binghwang,IEEE Trans Speech Autio Processing,1997年,5卷,3期,257页
  • 4Rose R C,Proc Int Conference Acoustics Speech and Signal Processing,1995年,281页
  • 5Chou W,Proc Int Conference Acoustics Speech and Signal Processing,1992年,1期,473页
  • 6张怡颖,朱小燕,张钹.一种新的说话人确认方法[J].软件学报,1999,10(4):372-376. 被引量:3

共引文献6

同被引文献2

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部