摘要
目的揭示朱世杰(1300前后)通过“三图”引出的代数恒等变换思想和方法。方法运用几何图形和数理分析相结合的方法分析“三图”的几何性质和代数意义。结果“三图”不仅具有几何意义,还具有深刻的代数意义,它是几何和代数的高度统一。结论“三图”所表达的代数恒等关系、思想和方法广泛应用于四元术中,为突破四元向更高元方程发展提供了可能性,其重要的代数思想需要进一步研究和挖掘。
Aim To reveal ZHU Shijie's thoughts and methods of algebra identical transformation in "three graphics". Methods Aanalyze geometric properties and algebra significance in "three graphics" by geometric graphics and mathematical analysis. Results There are profound geometric and algebraic significance in " three graphics" and it is the unification of geometric and algebra. Conclusion The relations, thoughts and methods in in " three graphics" have been adapted for four elemments algerbra, offered possible breakthrough of four elemments and de- velopment of higher multivariate equations. The algebraic significance should be further studied.
出处
《西北大学学报(自然科学版)》
CAS
CSCD
北大核心
2006年第6期1023-1027,共5页
Journal of Northwest University(Natural Science Edition)
基金
国家自然科学基金资助项目(10471111)
关键词
《四元玉鉴》
朱世杰(1300前后)
几何
代数
四元术
恒等变换
Si-Yuan Yu-Jian
Zhu Shi-jie ( round about 1300 century)
algebra
four elemments algerbra
identical transformation