期刊文献+

2^((n_1+n_2)-(k_1+k_2))部分因析裂区设计中纯净两因子交互效应的最大数目的界 被引量:3

原文传递
导出
摘要 部分因析裂区(FFSP)设计因其特殊结构而具有重要的研究价值.一个FFSP设计中有两类因子:全区(WP)因子和子区(SP)因子,它们可以组成3种两因子交互效应:WP两因子交互效应,WS两因子效应和SP两因子交互效应.本文在纯净效应准则下考虑分辨度Ⅲ和Ⅳ的FFSP设计,得到了FFSP设计中纯净WP两因子交互效应及WS两因子交互效应的最大数目的上、下界,给出了该数目达到下界的FFSP设计的构造方法,并进一步考察了这些构造方法的实际效果.
出处 《中国科学(A辑)》 CSCD 北大核心 2006年第12期1389-1403,共15页 Science in China(Series A)
基金 国家自然科学基金(批准号:10671099 10571093) 高等学校博士学科点专项科研基金(批准号:20050055038) 南开大学科技创新基金和陈省身数学研究所访问学者计划资助项目
  • 相关文献

参考文献24

  • 1Box G E P,Hunter J S.The 2^k-p fractional factorial designs.Technometrics,1961,3:311-351,449-458
  • 2Fries A,Hunter W G.Minimum aberration 2^k-p designs.Technometrics,1980,22:601-608
  • 3Wu C F J,Chen Y.A graph-aided method for planning two-level experiments when certain interactions are important.Technometrics,1992,34:162-175
  • 4Chen J,Sun D X,Wu C F J.A catalogue of two-level and three-level fractional factorial designs with small runs Internat.Statist Rev,1993,61:131-145
  • 5Chen H,Hedayat A S.2^n-m designs with resolution Ⅲ or Ⅳ containing clear two-factor interactions.J Statist Plann Inference,1998,75:147-158
  • 6Tang B,Ma F,Ingran D,et al.Bounds on the maximum numbers of clear two factor interactions for 2^m-p designs of resolution Ⅲ and Ⅳ.Canad J Statist,2002,30:127-136
  • 7Wu H,Wu C F J.Clear two-factor interactions and minimum aberration.Ann Statist,2002,30:1496-1511
  • 8Ai M Y,Zhang R C.s^n-m designs containing clear main effects or clear two-factor interactions.Statist Probab Lett,2004,69:151-160
  • 9Ke W,Tang B,Wu H.Compromise plans with clear two-factor interactions.Statist Sinica,2005,15:709-715
  • 10杨贵军,刘民千,张润楚.2_(IV)^(m-p)设计的弱最小低阶混杂与最多纯净两因子交互效应[J].中国科学(A辑),2005,35(9):1071-1080. 被引量:5

二级参考文献56

  • 1艾明要,何书元.部分因析裂区设计最优分区组的理论[J].中国科学(A辑),2005,35(3):265-272. 被引量:2
  • 2Fries A, Hunter W G. Minimum aberration 2^k-p designs. Technometrics, 1980, 26:225-232.
  • 3Chen J, Sun D X, Wu C F J. A catalogue of two-level and three-level fractional factorial designs with small runs. Internat Statist Rev, 1993, 61 ( 1 ): 131 - 145.
  • 4Tang B, Wu C F J. Characterization of minimum aberration 2^n-k designs in terms of their complementary designs. Ann Statist, 1996, 25:1176-1188.
  • 5Suen C Y, Chen H, Wu C F J. Some identities on q^n-m designs with application to minimum aberrations.Ann Statist, 1997, 25(3): 1176-1188.
  • 6Wu C F J, Zhang R C. Minimum aberration designs with two-level and four-level factors. Biometrika,1993, 80(1): 203-209.
  • 7Wu C F J, Zhang R C, Wang R G, Construction of asymmetrical orthogonal arrays of the type OA(8^k,(s^r 1)^n 1 ... (s^r t)^n t ). Statist Sinica, 1992, 2:203-219.
  • 8Zhang R C, Shao Q. Minimum aberration (s^2)s^n-k designs. Statist Sinica, 2001, 11:213-223.
  • 9Mukerjee R, Wu C F J. Minimum aberration designs for mixed Factorials in terms of complementary sets,Statist Sinica, 2001, 11 : 225-239.
  • 10Ai M Y. Zhang R C. Characterization of minimum aberration mixed factorials in terms of consulting designs, Statist Papers, 2004, 46(2): 157-171.

共引文献5

同被引文献39

  • 1杨贵军,刘民千,张润楚.2_(IV)^(m-p)设计的弱最小低阶混杂与最多纯净两因子交互效应[J].中国科学(A辑),2005,35(9):1071-1080. 被引量:5
  • 2Yingshan ZHANG,Weiguo LI,Shisong MAO,Zhongguo ZHENG.A SIMPLE METHOD FOR CONSTRUCTING ORTHOGONAL ARRAYS BY THE KRONECKER SUM[J].Journal of Systems Science & Complexity,2006,19(2):266-273. 被引量:8
  • 3赵胜利,张润楚,刘民千.含有纯净两因子交互作用成分的4^m2^n设计的某些结果[J].中国科学(A辑),2007,37(3):323-340. 被引量:3
  • 4庞善起,张应山.正交表的乘法[J].数学物理学报(A辑),2007,27(3):568-576. 被引量:5
  • 5Ai M Y, Zhang R C. Characterization of minimum aberration mixed factorials in terms of consulting designs. Statist Papers, 2005, 46(2): 157-171.
  • 6Wu C F J, Chen Y. A graph-aided method for planning two-level experiments when certain interactions are important. Technometrics, 1992, 34:162-175.
  • 7Tang B, Ma F, Ingram D, Wang H. Bounds on the maximum number of clear two-factor interactions for2^m-p designs of resolution Ⅲ and Ⅳ. Canad J Statist, 2002, 30:127-136.
  • 8Chen H, Hedayat A S. 2^n-m designs with resolution Ⅲ qr Ⅳ containing clear two-factor interactions. J Statist Plann Inference, 1998, 75:147-158.
  • 9Wu H, Wu C F J. Clear two-factor interactions and minimum aberration. Ann Statist, 2002, 30:1496-1511.
  • 10Ai M Y, Zhang R C. s^n-m designs containing clear main effects or clear two-factor interactions. Statist Probab Lett, 2004, 69:151-160.

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部