摘要
探讨了功能梯度板中的裂纹问题.在动载荷作用下,使用Newmark方法离散时间,由于材料非均匀,因此将材料的质量密度假设为一个函数,弹性摸量假设为较Erdogan模型更广泛的一般函数.作为一个例子,求解了两种不同材料组合成的一个单裂纹问题,计算了裂纹尖端的I型应力强度因子,指出:材料质量密度变化的影响不能忽略,也不能简单地取成某些常数.文中比较了使用Erdogan函数与一般函数的计算结果.
The crack problem for functionally condition, Newmark method is used for the discrete graded plate is considered. In the dynamic loading timepiece. Due to the non- homogeneous material, the mass density is assumed as a function. It is more flexible to assume the elastic modular as the general functions. Erdogan' s model is only one instance of the general functions. A single crack problem for two different material combinations is solved as an example. The Mode I stress intensity factors are calculated. The effect of the variation of the mass density could not be neglected, and it should not be simply re' garded as some constant. The results calculated by using both Erdogan' s function and the general functions are compared .
出处
《黑龙江大学自然科学学报》
CAS
北大核心
2006年第6期764-769,共6页
Journal of Natural Science of Heilongjiang University
基金
Supported by the National Natural Science Foundation of China (10272036)
关键词
功能梯度材料
应力强度因子动载荷
数值方法
functionally graded materials
stress intensity factor
dynamic load
numerical method