期刊文献+

基于LOG算法的DSA图像边缘检测 被引量:2

Automatic vessel boundary extraction and stenosis quantification method based on Laplacian-of-Gaussian algorithm using DSA images
下载PDF
导出
摘要 在对心血管狭窄病人的治疗中,常常需要对病人心血管的狭窄情况进行准确评估,而数字减影血管造影技术(DSA)是血管疾病诊断,特别是介入治疗不可缺少的检查手段,如何准确提取DSA血管边缘对于血管狭窄率的测量具有非常重要的意义。针对DSA血管图像的特点,本文在分析传统的LOG(Laplacian-of-Gaussian algorithm)轮廓检测算法存在问题的基础上,进行了改进使其能正确地获得血管的边缘图像,同时利用改进的边界链码对血管边缘进行了分割图像的结构化,将跟踪结果用于血管狭窄率的测量。最后,基于改进的边缘检测算法,开发了血管边缘检测和狭窄率测量工具,取得了良好的检测效果。 The stenosis degree need to be accurately assessed in the treatment of vascular stenosis patients, while digital subtraction angiography(DSA) is the indispensable technology to carry out the assessment, especially in intervention treatment. How to extract the artery boundary in DSA images has good significance on stenosis quantification. In view of the features of DSA imaging, we put forward a new edge-detecting method based on the classical Laplacian-of-Gaussian algorithm. Some improvement is done on the LOG algorithm to accurately acquire the edge image of blood vessel; a boundary chain code method is also adopted to structure the segmented image. The edge-line extracted is subsequently used in stenosis percentage measuring. As a result,we realized a blood vessel boundary extraction and stenosis quantification software using the new algorithm. The new computerized stenosis measuring system will not only greatly increase the speed and accuracy of stenosis measuring,but also reduce the variability between readers.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2006年第12期1641-1646,共6页 Chinese Journal of Scientific Instrument
基金 973前期预研(2006CB708610) 教育部博士点基金(20060286012) 江苏省自然科学重点基金(BK2006709)资助项目
关键词 边缘检测 轮廓跟踪 DSA LOG算法 boundary extraction edge detection DSA LOG algorithm
  • 相关文献

参考文献17

  • 1HARIS K,EFSTRATIADIS S N,MAGLAVERAS N,et al.Automated coronary artery extraction using watersheds[J].IEEE Computers in Cardiology,1997,24:741-744.
  • 2ASCHERMANN M,FERGUSON J J.Visual and quantitative evaluation of coronarography findings in patients with percutaneous transluminal coronary angiography[J].Vnitr Lek,1993,39(7):645-650.
  • 3EIHO S,QIAN Y.Detection of coronary artery tree using morphological operator[J].Computers in Cardiology,1997,24:525-528.
  • 4HARIS K,EFSTRATIADIS S N.Model-based morphological segmentation and labeling of coronary angiograms[J].IEEE Trans Med Imag,1999,18(10):1003-1014.
  • 5于甬华,田世禹,周正东,王立功,舒华中,罗立民.冠脉数字造影图像血管分割方法研究[J].山东生物医学工程,2002,21(4):5-10. 被引量:3
  • 6CHAUDHURI S,CHATTERJEE S,KATZ N,et al.Detection of blood vessels in retinal images using two-dimensional matched filters[J].IEEE Trans Med Imag,1989,8 (3):263-269.
  • 7THRASYVOULOS N,PAPPAS.A new method for estimation of coronary artery dimensions in angiograms[J].IEEE Trans Acoust,Speech Signal Processing,1999,36(9):1501-1513.
  • 8GRIST T M.Magnetic resonance angiography of renal artery stenosis[J].American Journal of Kidney Disease.1994,24(4):700-12.
  • 9谷口庆治.数字图像处理(应用篇)[M].北京:科学出版社,2002.
  • 10CASTLEMANKR.数字图像处理[M].北京:电子工业出版社,2002..

二级参考文献24

  • 1[1]Haris K, Efstratiadis SN, Maglaveras N, et al. Automated coronary artery extraction using watersheds[J]. IEEE Computers in Cardiology,1997,24:741-744.
  • 2[2]Eiho S, Qian Y. Detection of coronary artery tree using morphological operator[J]. Computers in Cardiology,1997,24:525-528.
  • 3[3]Haris K, Efstratiadis SN, et al. Model-based morphological segmentation and labeling of coronary angiograms[J]. IEEE Trans Med Imag,1999,18(10):1003-1014.
  • 4[4]Chaudhuri S, Chatterjee S, Katz N, et al. Detection of blood vessels in retinal images using two-dimensional matched filters[J]. IEEE Trans Med Imag,1989,8(3):263-269.
  • 5[5]Thrasyvoulos N, Pappas. A new method for estimation of coronary artery dimensions in angiograms[J]. IEEE Trans Acoust, Speech Signal Processing,1999,36(9):1501-1513.
  • 6[6]Pedersen L, Grunkin M, Ersboll B, et al. Quantitative measurement of changes in retinal vessel diameter in ocular fundus images[J]. Pattern Recognition Letters,2000,21:1215-1223.
  • 7[7]Klein A, Egglin TK, et al. Identifying vascular features with orientations specific and B-spline snakes[J]. IEEE Computers in Cardiology,1994,113-116.
  • 8[11]Michael Unser, A.Aldroubi, and M.Eden. B-spline signal processing:part-effi cient design and applications. IEEE Trans. Signal Processing,1993,41(2):834~848 .
  • 9[12]J. M. Fitzpatrick. The existence of geometrical density-image transformatio ns to object motion. Computer Vision, Graphics and Image Processing,1988,44(2):1 55~174.
  • 10[13]L. van Tran & J. Sklansky. flexible mask subtraction for digital angiography . IEEE Transactions on Medical Imaging,1992,11(3):407~415.

共引文献67

同被引文献23

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部