期刊文献+

支持向量机在机器视觉识别茶叶中的应用研究 被引量:18

Study on identification of tea using computer vision based on support vector machine
下载PDF
导出
摘要 本文针对茶叶的感官评定分类存在主观性强和一致性差等缺点,提出了一种新的茶叶识别分类方法,该方法是在机器视觉技术定量描述茶叶的颜色特征的基础上,根据支持向量机模式识别原理分别为碧螺春、龙井和祁红等3种茶叶建立了各自的分类识别模型。在RBF核函数下,所建立的模型最佳,3个模型的回判率都达到100%;对未知样本进行验证时,模型的识别率分别为95%、90%和100%。实验结果表明,基于支持向量机的机器视觉技术识别茶叶色泽类型是可行的。 Aiming at the deficiencies of tea classification by sensory evaluation such as result subjectivity and poor consistency, a new method of tea identification was proposed,which is based on pattern recognition theory of support vector machine (SVM) and uses computer vision to quantitatively depict tea color characteristic. The identification models for Biluochun tea,Longjing tea,and Qihong tea were built. With RBF kernel function, the back estimation rates of three models are all 100 %; while predicting unknown tea samples, the identification rates of three models are 95%,90%,and 100% respectively. The experimental results show that the proposed method is feasible.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2006年第12期1704-1706,共3页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(30370813) 江苏省高校研究生科技创新计划 江苏大学博士生创新基金(1293000232)资助项目
关键词 机器视觉 支持向量机 识别 茶叶 computer vision support vector machine identification tea
  • 相关文献

参考文献10

二级参考文献23

  • 1阮泽良.茶叶实用新技术手册[M].成都:成都科技大学出版社,1994..
  • 2[2]Long Defan, Fan Shangchun. Research on the extraction of quasi-circular object contours using active contour model in polar coordinate. SPIE Vol. 5253,Fifth International Symposium on Instrumentation and Control Technology, 251 ~ 254.
  • 3Tao Y,American Society Agricaltural Engineers,1995年,38卷,5期,1555页
  • 4阮泽良,茶叶实用新技术手册,1994年
  • 5汤顺青,色度学,1990年
  • 6Bottou L, Cortes C, Denker J. Comparison of classifier methods:a case study in handwriting digit recognition [ A]. Preceedings of the 12th IAPR International Conference on Pattern Recognition [ C ]. Jerusalem: IEEE, 1994.77 ~ 82.
  • 7Platt J C, Cristianini N, Shawe-Taylor J. Large margin DAGs for multiclass classification [ A ]. Advances in Neural Information Processing Systems [C]. 2000.547 -553.
  • 8Vapnik V. Statistical Learning Theory [ M]. New York:Wiley,1998.
  • 9Crammer K , Singer Y. On the lesrnability and design of output codes for multiclass problems [A]. Proceedings of the Thirteenth Annual Conference on Computational Learning Theory [ C ]. SanFransisco:Morgan Kanfmann, 2000.35 ~46.
  • 10Hsu C W, Lin C J. A comparison of methods for multiclass support vector machines. hines [ J ]. IEEE Transactions on Neural Networks, 2002,13(2) :415 -425.

共引文献185

同被引文献288

引证文献18

二级引证文献218

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部