期刊文献+

福辛普利及美托洛尔对涡流剪切应力诱导内皮细胞表达基质金属蛋白酶9影响的实验研究 被引量:1

Fosinopril but not metoprolol attenuated the increased matrix metalloproteinases 9 expression at mRNA and protein levels of human umbilical vein endothelial cells exposed to oscillatory flow
原文传递
导出
摘要 目的研究福辛普利、美托洛尔对涡流剪切应力诱导内皮细胞表达基质金属蛋白酶9(MMP9)的影响。方法将脐静脉内皮细胞分别放置于层流流室和涡流流室中,采用半定量逆转录聚合酶链反应(RT-PCR)及免疫印迹法(Westernblot)观察不同时间层流和涡流对脐静脉内皮细胞的影响,再将福辛普利及美托洛尔按1×10-7mol/L、1×10-5mol/L分别加入涡流流室培养液中,予以药物干预,观察MMP9表达变化。结果Westernblot及RT-PCR的检测结果均显示层流组内皮细胞未见MMP9的表达,涡流组培养4h可见MMP9的表达,24h后可见明显表达。涡流加福辛普利作用24h后可见MMP9的表达降低,涡流加美托洛尔干预24h后未见明显变化。结论福辛普利具有使涡流流动状态下内皮细胞表达MMP9的水平下调的作用。 Objective To investigate the effect of fosinopril and metoprolol on metalloproteinases 9 (MMPg) expression of human umbilical vein endothelial cells (HUVECs) stimulated by oscillatory flow. Methods HUVECs were exposed to steady laminar flow or oscillatory flow, laminar flow or oscillatory flow plus various concentrations ( 1×10^-7mol/L、1×10^-5mol/L) of fosinopril and metoprolol for 4 and 24 hours. MMP9 mRNA and protein expressions of HUVECs were determined by RT-PCR and Western blot, respectively. Results MMP9 expression at mRNA and protein levels were significantly increased in HUVECs exposed to oscillatory flow than that to laminar flow and these could be down-regulated by coincubation with fosinopril (1×10^-7mol/L、1×10^-5mol/L, P 〈 0. 01, P 〈 0. 05, respectively) but not by co-incubation with metoprolol. Conclusion Fosinopril can attenuate the increased MMP9 expression at mRNA and protein levels of HUVECs exposed to oscillatory flow.
出处 《中华心血管病杂志》 CAS CSCD 北大核心 2006年第12期1113-1116,共4页 Chinese Journal of Cardiology
关键词 高血压 福辛普利 美托洛尔 血流动力学 血管内皮 Hypertension Fosinopril Metoprolol Hemodynamics Endothelium,vascular
  • 相关文献

参考文献12

  • 1Sato M,Ohashi T.Biorheological views of endothelial cell responses to mechanical stimuli.Biorheology,2005,42:421-441.
  • 2McKinney VZ,Rinker KD,Truskey GA.Normal and shear stresses influence the spatial distribution of intracellular adhesion molecule-1 expression in human umbilical vein endothelial cells exposed to sudden expansion flow.J Biomech,2006,39:806-817.
  • 3Kofler S,Nickel T,Weis M.Role of cytokines in cardiovascular diseases:a focus on endothelial responses to inflammation.Clin Sci (Lond),2005,108:205-213.
  • 4Magid R,Murphy TJ,Galis ZS.Expression of matrix metalloproteinase-9 in endothelial cells is differentially regulated by shear stress.Role of c-Myc.J Biol Chem,2003,278:32994-32999.
  • 5Schnittler HJ,Franke RP,Akbay U,et al.Improved in vitro rheological system for studying the effect of fluid shear stress on cultured cells.Am J Physiol,1993,265(1Pt1):C289-C298.
  • 6Curci JA,Mao D,Bohner DG,et al.Preoperative treatment with doxycycline reduces aortic wall expression and activation of matrix metalloproteinases in patients with abdominal aortic aneurysms.J Vasc Surg,2000,31:325-342.
  • 7Lehoux S,Castier Y,Tedgui A.Molecular mechanisms of the vascular responses to haemodynamic forces.J Intern Med,2006,259:381-392.
  • 8Frick M,Alber HF,Rinner A,et al.Relationship of sonographic wall components of the brachial artery to hypertension and coronary atherosclerosis.Vasc Med,2005,10:185-190.
  • 9World CJ,Garin G,Berk B.Vascular shear stress and activation of inflammatory genes.Curr Atheroscler Rep,2006,8:240-244.
  • 10Schmidt R,Bultmann A,Ungerer M,et al.Extracellular matrix metalloproteinase inducer regulates matrix metalloproteinase activity in cardiovascular cells:implications in acute myocardial infarction.Circulation,2006,113:834-841.

同被引文献27

  • 1Bhatt DL, Topol EJ. Scientific and therapeutic advances in antiplatelet therapy. Nat Rev Drug Discov, 2003, 2: 15-28.
  • 2Kroll MH, Hellums JD, McIntire LV, et al. Platelets and shear stress. Blood, 1996, 88: 1525-1541.
  • 3Jackson SP, Nesbitt WS, Westein E. Dynamics of platelet thrombus formation. J Thromb Haemost, 2009, 7 Suppl 1 : 17- 20.
  • 4Hathcock JJ. Flow effects on coagulation and thrombosis. Arterioscler Thromb Vasc Biol, 2006, 26: 1729-1737.
  • 5Tokarev AA, Butylin AA, Ataullakhanov FI. Platelet adhesion from shear blood flow is controlled by near-wall rebounding collisions with erythrocytes. Biophys J, 2011, 100 : 799-808.
  • 6Nesbitt WS, Westein E, Tovar-Lopez FJ, et al. A shear gradient- dependent platelet aggregation mechanism drives thrombusformation. Nat Med, 2009, 15 : 665-673.
  • 7Maxwell M J, Westein E, Nesbitt WS, et al. Identification of a 2- stage platelet aggregation process mediating shear-dependent lhrombus formation. Blood, 2007, 109 .. 566-576.
  • 8Ruggeri ZM. Platelet adhesion under flow. Mierocirculation, 2009, 16: 58-83.
  • 9Ruggeri ZM, Orje JN, Habermann R, et al. Activation- independent platelet adhesion and aggregation under elevated shear stress. Blood, 2006, 108: 1903-1910.
  • 10Donadelli R, Orje JN, Capoferri C, et al. Size regulation of yon Willebrand factor-mediated platelet thrombi by ADAMTS13 in flowing blood. Blood, 2006, 107: 1943-1950.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部