摘要
对结构复杂的系统进行动力学仿真,需要用较多的自由度来描述它的运动,本文的自行炮动力学模型的自由度就有17个之多。对这种众多自由度系统用现有方法推导动力学方程组将是十分困难的,本文介绍的速度矩阵法,利用系统的速度、角速度表达式,定义速度矩阵,导出用速度矩阵表示系统动力学方程组的通用公式,简化了推导方程式的烦琐过程,还能在不写出方程式的前提下,通过数值积分求得动力学方程的解,减小了推导方程式的困难,发挥了计算机软件的优势,为众多自由度完整系统的建模和求解提供了简便方法。
In order to emulate the dymamic motion of a complicated system,a dynamic modeling having many degrees of freedom is needed.The number of degrees of freedom for the dynamic modeling discussed here is increased to seventeen.The Velocity Matrix Method as introduced here solves the problem successfully.The velocity matrix based on expressions of the system's linear and angular velocities is set up,from which the differential and partial differential matrices are derived and the system's general dynamic equations are derived directly from it.The method not only simplifies the process of derivation,but also arrives at the solution by numerical integration.It introduces an easy and effective way in soling multibody and multidegree-of-freedom dynamic problems.
出处
《兵工学报》
EI
CAS
CSCD
北大核心
1996年第3期193-197,共5页
Acta Armamentarii
关键词
多刚体
完整系统
速度矩阵法
火炮
multibody system,holonomic system,velocity matrix method