期刊文献+

镍单晶薄膜纳米压痕的准连续介质模拟 被引量:8

QUASICONTINUUM SIMULATION OF NANOINDENTION OF NICKEL FILM
下载PDF
导出
摘要 用准连续介质方法模拟了大规模原子的镍薄膜在纳米压痕下发生初始塑性变形的行为.主要得到了:(1)载荷-位移响应.在载荷位移曲线上除了反应晶体弹性性质的直线外还有数次的载荷突然下降过程.(2)位错形核现象.与载荷-位移曲线上的载荷突然下降相对应的在受压的晶体上发现了位错形核现象,说明载荷的下降是因为位错形核引起的.(3)位错的发射机制.用Peierls-Nabarro位错模型以及能量法分析了位错的发射机制,理论值与计算值吻合较好.(4)几何必需位错密度.用一个简单的模型计算了几何必须位错密度.此外还考虑了边界条件对模拟结果的影响. A large-scale atom simulation of nanoindentation into a thin nickel film using the quasicontinuum method was performed. The initial stages of the plastic deformation of nickel were studied. Several useful results were obtained. (1) The response of the load versus indentation depth. On the load versus indentation depth curve, besides the straight parts corresponding with the elastic property of nickel, the sudden drop of the load occurred several times. (2) The phenomena of dislocation nucleation. The dislocation nucleation appeared when the load descended. This makes it clear that dislocation nucleation leads to the drop of the load. (3) The mechanism of the dislocation emission. The Peierls-Nabarro dislocation model and an energetic criterion were used to analyze the dislocation emission. And the computational value was in good agreement with the predict value. (4) The density of geometrically necessary dislocations. A simple model was used to obtain the density of geometrically necessary dislocations beneath the indenter. Furthermore, the influence of the boundary conditions on the simulation results was discussed.
作者 曾凡林 孙毅
出处 《固体力学学报》 CAS CSCD 北大核心 2006年第4期341-345,共5页 Chinese Journal of Solid Mechanics
关键词 准连续介质方法 纳米压痕 位错形核 几何必需位错密度 quasicontinuum method, nanoindentation, dislocation nucleation, density of geometrically necessary dislocation
  • 相关文献

参考文献16

  • 1Li X D,Bhushan B.A review of nanoindentation continuous stiffness measurement technique and its applications.Materials Characterization,2002,48:11~36
  • 2黄丹,陶伟明,郭乙木.分子动力学模拟纳米镍单晶的表面效应[J].固体力学学报,2005,26(2):241-244. 被引量:7
  • 3Tadmor E B,Ortiz M,Phillips R.Nanoindentation and incipient plasticity.Journal of Materials Research,1999,14(6):2234~2250
  • 4Tadmor E B,Ortiz M,Phillips R.Quasicontinuum analysis of defects in solids.Philosophical Magazine,1996,A73:1529~1563
  • 5Tadmor E B,Ortiz M,Phillips R.Mixed atomistic and continuum models of deformation in solids.Langmuir 12 1996,12:4529~4534
  • 6Shenoy V B,Miller R,Tadmor E B,et al.Quasicontinuum models of interfacial structure and deformation.Physical Review Letters,1998,80:742~745
  • 7Shenoy V B,Miller R,Tadmor E B,et al.An adaptive finite element approach to atomic-scale mechanics:the quasicontinuum method.Journal of the Mechanics and Physics of Solids,1999,47:611~642
  • 8Miller R,Tadmor E B,Phillips R,et al.Quasicontinuum simulation of fracture at the atomic scale.Modelling and Simulation in Materials Science and Engineering,1998,6:607~638
  • 9Voter A F,Chen S P.Accurate interatomic potentials for Ni,Al and Ni3Al.Materials Research Society.Symposium Proceedings,1987,82:175~180
  • 10Friedel J.Dislocations.Pergamon,New York,1964

二级参考文献26

  • 1[2]Duesbery M S, Vitek V. Plastic anisotropy in Bcc transition metals. Avta Mater, 1998, 46:1481~1489
  • 2[3]Chang J P, Cai W, Bulatov V V, Yip S. Dislocation motion in BCC metals by molecular dynamics. Materials Science and Engineering, 2001, 160:A309~310
  • 3[4]Chang J P, Cai W, Bulatov V V, Yip S. Molecular dynamics simulation of motion of edge and screw dislocation in a metal. Computer Materials Science, 2002, 23:111~117
  • 4[5]Hirth J P, Lothe J. Theory of dislocations. Wiley, New York, 1982
  • 5[6]Gumbsch P, Gao H J. Dislocations faster than the speed of sound. Science, 1999, 283:965~969
  • 6[7]Gumbsch P, Gao H J. Driving force and nucleation of supersonic dislocations. J Comput-Aided Mater 1999, 6(2~3):137~145
  • 7[8]Ackland G J et al. Simple N-body Potential for the noble metals and nicke. Philosophical Magazine A, 1987, 56(6):735~747
  • 8[9]Wang J, Woo C H, Huang H C. Destabilization of dislocation dipole at high velocity. Applied Physics Letters, 2002, 79(22):3621~3629
  • 9[10]Xiangli Liu, Golubov S I, Woo C H, Hanchen Huang. Glide of edge dislocations in tungsten and molybdenum. Materials Science and Engineering, 2004, 96:A365~375
  • 10[11]Nadgornryi E. Dislocation dynamics and mechanical properties of crystals. Prog Mater Sci, 1998, 31:139~147

共引文献13

同被引文献69

引证文献8

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部