期刊文献+

粘弹性胶层中Ⅰ型裂纹的动态扩展

THE DYNAMIC GROWTH OF MODE Ⅰ CRACK IN VISCO-ELASTIC LAYER
下载PDF
导出
摘要 研究粘弹性胶层中Griffith裂纹在Ⅰ型载荷作用下,裂纹尖端动态应力强度因子和能量释放率的时间响应.首先,利用积分变换方法,推导出粘弹性层的控制方程组;其次,引入位错密度函数,并结合边界条件和界面连接条件,导出反映裂纹尖端奇异性的Cauchy型奇异积分方程组,然后,应用Chebyshev正交多项式化奇异积分方程组为代数方程组,并采用Schmidt方法对其数值求解,最后,经过Laplace逆变换,求得动态应力强度因子和能量释放率的时间响应.通过对材料参数的讨论,得到动应力强度因子和能量释放率随剪切松驰参量的减小而增大,随膨胀松弛参量的减小而减小,弹性参数对其影响较小. The dynamic stress intensity factor and energy release rate were studied about the Griffith crack in visco-elastic layer under mode Ⅰ load. Firstly, using integral transform, the controlling equations expressed by displacement of viscoelastic layer were deduced. Secondly, by applying inverse Fourier integral transform to the displacement,and uniting the constitutive and geometrical equations, the analytical expression of stress in Laplace domain were derived. Thirdly, by defining dislocation density functions, the Cauchy singular integral equations were obtained according to the boundary condition and interface connection conditions,and the problem was reduced to algebraic equations by Chebyshev orthogonal polynomial. Based the these,the unknown coefficient of the algebraic equations can be solved by Schmidt method. Finally, the time response of dynamic stress intensity factor and energy release rate are obtained by inverse Laplace transform. By analyzing of materials parameters,Some conclusions can be reached as the mode Ⅰ dynamic stress intensity factor and energy release rate increases with decreasing shear relaxation parameter, and decreases with decreasing swelling relaxation parameter, however elastic parameter have little influence on it.
出处 《固体力学学报》 CAS CSCD 北大核心 2006年第4期346-354,共9页 Chinese Journal of Solid Mechanics
关键词 粘弹性 界面裂纹 动态应力强度因子 能量释放率 奇异积分方程 visco-elasticity, interface crack, dynamic stress intensity factor, energy release rate, singular integral equation
  • 相关文献

参考文献9

二级参考文献28

  • 1[1]WILLIAMS M L. The stresses around a fault or crack in dissimilar media[ J]. Bulletin of the Seismoloical society of America[J], 1959, 49(2): 199 -204.
  • 2[2]RICE J R. Elastic fracture mechanics concepts for interfacial cracks[J]. ASME J Appl Mech, 1988, 55 ( 1 ):98 -103.
  • 3[3]COMNINOU M. The interracial crack[J]. J Appl Mech,1977, 44:631 -636.
  • 4[4]ERDOGAN F. Stress distribution in bonded dissimilar materials with cracks [ J ]. ASMEJAppl Mech, 1965,32: 403 - 410.
  • 5[5]KNOWLES J K, STERNBERG E. Large deformations near a tip of an interface - crack between two NeoHookean sheets [ J]. J. Elasticity, 1983, 13:257 -293.
  • 6[6]HAO T H. Nonlinear response of mode I crack on bimaterial interfaces[J]. Int J Fract, 1989, 41: 23 -28.
  • 7[8]SHIH C F, ASARO R J. Elastic -Plastic Analysis of Crack on Bi - Material Interfaces: Part Ⅰ: Small Scale Yielding[J]. J Appl Mech, 1988, 55:229-316.
  • 8[9]SHIH C F, ASARO R J. Elastic - Plastic Analysis of Crack on Bi - Material Interfaces: Part Ⅱ: Structure of Small Scale Yielding Fields [ J ]. J Appl Mech, 1989,56: 763 - 779.
  • 9[10]SHIH C F, ASARO R J. Elastic - Plastic Analysis of Crack on Bi - Material Interfaces: Part Ⅲ: Large Scale Yielding[J]. J Appl Mech, 1991, 58:450-463.
  • 10[11]WANG T C. Elastic -plastic Asymptotic Fields for Cracks on Bi - material Interfaces [ J ]. Engng Fract Mech, 1990, 37(3): 527-538.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部