期刊文献+

随钻扩眼工具的动力学仿真研究 被引量:7

Kinetic simulation study on borehole-inside movement of reaming tool while drilling.
下载PDF
导出
摘要 为了解随钻扩眼工具在井眼内的运动状态和受力情况,促进钻井工具的优化设计和更合理的应用,对随钻扩眼工具在井眼内的运动进行了研究,给出了基于拉格朗日方程的动力学分析方法;基于法向接触约束的惩罚准则,计算了扩眼刀翼与岩石之间的接触力,对随钻扩眼工具在井眼内的运动过程和动力响应进行了动力学仿真研究。仿真结果表明,随着随钻扩眼工具轴心偏离井眼轴心距离的增大,或扩眼刀翼数量的减少,所扩井眼的实际可通过半径逐渐减小,扩眼刀翼与井壁的最大接触力则逐渐增大,据仿真结果给出了实际可用的建议。研究结果与相关试验规律吻合较好,说明该分析方法是有效的。研究结果对多翼肋型石油钻井工具的设计和应用具有普遍的指导意义。 For the movement of while-drilling reaming tool in the borehole,the kinetic analytical method based on the Lagrange equation was presented.In terms of the penalty rules of normal-direction contact restriction,the contact force between reamer wings and rock was calculated.Meanwhile,the movement process and dynamic response of reaming tool in the borehole were investigated by kinetic simulation.Results show that with the increase of eccentricity between reaming tool axes and well bore axes,or with the decrease of reamer wing number,the actual pervious radius of reamed borehole will reduce gradually,while the maximal contact force between reamer wing and borehole wall will increase simultaneously.The simulation results present practical and applicable proposition.Research results agree well with relevant experimental law,which explains the availability of proposed analytical method.Research results offer extensive guidance for the design and application of multi-winged oil well drilling devices.
出处 《石油钻采工艺》 CAS CSCD 北大核心 2006年第6期4-7,共4页 Oil Drilling & Production Technology
基金 国家"十五"攻关项目"复杂油藏配套钻井技术及关健装备研究"(编号:2003BA613A-11)的部分成果
关键词 随钻扩眼 扩眼刀翼 井眼 接触 动力学 仿真研究 Reaming While Drilling(RWD) reamer wing well bore contact kinetics simulation study
  • 相关文献

参考文献11

二级参考文献11

  • 1刘锦阳,洪嘉振.柔性机械臂接触碰撞问题的研究[J].机械科学与技术,1997,16(1):100-104. 被引量:8
  • 2M.Greener 倪荣富等(译).管下扩眼器改善了蠕动盐岩地层中的钻井(SPE年会论文选译)[M].,1989.195-207.
  • 3P.C.Desai 赵凯民(译).下部扩眼-新技术老方法(SPE年会论文选译)[M].,1989.215-223.
  • 4刘锦阳,机械科学与技术,1997年,16卷,1期,100页
  • 5Wu S C,J Mech Design,1990年,112卷,390页
  • 6Wu S C,Mech Struct Mach,1989年,17卷,1期,3页
  • 7洪嘉振,刘延柱.离散系统计算动力学现状[J]力学进展,1989(02).
  • 8Stephen L. Campbell. Least squares completions for nonlinear differential algebraic equations[J] 1993,Numerische Mathematik(1):77~94
  • 9C. Führer,B. J. Leimkuhler. Numerical solution of differential-algebraic equations for constrained mechanical motion[J] 1991,Numerische Mathematik(1):55~69
  • 10G. Golub. Numerical methods for solving linear least squares problems[J] 1965,Numerische Mathematik(3):206~216

共引文献48

同被引文献54

引证文献7

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部