期刊文献+

不含短环的(n,3,k)LDPC码的几何构造方法

Geometry Construction of (n,3,k) LDPC Codes without Short Cycles
下载PDF
导出
摘要 该文基于不含短环的(n,2,k)规则低密度奇偶校验(LDPC)码,提出了一种最短环长为8的(n,3,k)规则LDPC码的几何构造方法,该方法简单直观而有效。仿真结果显示,在AWGN信道中其具有明显优于随机构造的规则LDPC码的性能。 In this paper, based on (n,2,k) regular Low Density Parity-Check (LDPC) codes without short cycles, a geometry method for the construction of(n,3,k) regular LDPC codes with 8-girth is proposed,which is simple,intuitionistic and effective. Simulation results show that these codes achieve obviously better performance than randomly constructed regular LDPC codes over AWGN channals.
出处 《电子与信息学报》 EI CSCD 北大核心 2006年第12期2315-2317,共3页 Journal of Electronics & Information Technology
基金 国防科技重点基金(51473020105JB3202)资助课题
关键词 LDPC码 容许斜度对 和-积译码 LDPC codes, Admissible slope pair, Cycle, Sum-product decoding
  • 相关文献

参考文献6

  • 1Gallager R G.Low-density parity check codes.IRE Trans.on Information Theory,1962,IT-8(3):208-220.
  • 2李水平,刘玉君,邢庆君,李智勇.LDPC码的环分析[J].信息工程大学学报,2003,4(4):82-84. 被引量:6
  • 3刘斌,童胜,白宝明.不含小环的低密度校验码的代数构造方法[J].电子与信息学报,2004,26(11):1778-1782. 被引量:3
  • 4Haotian Zhang,Moura Jose M F.The design of structured regular LDPC codes with large girth.IEEE Trans.on Globecom,2003:4022-4027.
  • 5Zhang Tong,Parhi Parhi Keshab.Joint code and decoder design for implementation oriented (3,k) regular LDPC codes.Department of Electrical and Computer Engineering University of Minnesona,IEEE Trans.on Com.,2001:1232 -1236.
  • 6Hu Xiao-Yu.Eleftheriou Evangelos,Arnold Dieter Michael,Dholakia Ajay.Efficient implementations of the sum-product algorithm for decoding LDPC codes IAI.GLOBECOM[C].San Antonio.IEEE,2001:1036-1036.

二级参考文献7

  • 1Gallager R G. Low density parity check codes. IRE Trans. on Information Theory, 1962, IT-8(3):208-220.
  • 2Wiberg N. Codes and decoding on general graphs. [Ph.D. Thesis], Sweden, Linkoping University,1996.
  • 3Prabhakar A, Narayanan K. Pseudorandom construction of low-density parity-check codes using linear congruential sequences. IEEE Trans. on Comm., 2002, COM-50(9): 1389-1396.
  • 4MacKay D J C. Good error correcting codes based on very sparse matrices. IEEE Trans. on Information Theory, 1999, IT-45(2): 399-431.
  • 5刘玉君.信道编码[M].郑州:河南科学技术出版社,2001.9.
  • 6卢开澄.图论及其应用[M].北京:清华大学出版社,1995..
  • 7柯召 孙琦.数论讲义(第二版)[M].北京:高等教育出版社,1999.29-31.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部