期刊文献+

基于最优扩域上的椭圆曲线密码系统的基点选取

The Research on Choosing Base Point of Elliptic Curve Cryptosystem in Optimal Extension Fields
下载PDF
导出
摘要 本文讨论了重模二次剩余的定义、性质,完整地设计出选取最优扩域上的椭圆曲线密码系统的基点的算法,并给出了选取成功的概率和相关数学证明. The definition and characters of Double-module quadratic residue is discussed in this paper, The arithmetic for choosing base point of Elliptic curve cryptosystem in optimal extension field is worked out and proven mathematically, moreover, the successful probability is also provided.
出处 《中央民族大学学报(自然科学版)》 2006年第3期232-237,共6页 Journal of Minzu University of China(Natural Sciences Edition)
基金 国家自然科学基金(批准号:10471148) 中央民族大学"十五"重点科研项目资助
关键词 最优扩域 重模二次剩余 椭圆曲线密码系统 基点 optimal extension field double-module quadratic residue elliptic curve cryptosystem base point
  • 相关文献

参考文献7

  • 1[1]KOBLITZ N.Elliptic curve cryptosystems[J].Mathematics of Computation,1987,48:203 ~ 209.
  • 2[2]MILLERr V.Uses of elliptic curves in cryptography[J].Lecture Notes in Computer Science,1986,218:417 ~ 426.
  • 3[3]DANIEL V,Bailey C,Paar C.Optimal Extension Fields for Fast Arithmetic in Public-Key Algorithms[C]//Advances in Cryptology-CRYPTO'98,Lecture Notes in Computer Science(LNCS),1462:472 ~ 485,Springer-Vertag,Aug 1998.
  • 4[4]SMART N P.A Comparison of Different Finite Fields for Elliptic Curve Cryptosystems[J].Computers and Mathematics with Applications,2001,42:91 ~ 100.
  • 5[5]DARREL HANKERSON,ALFRED MENEZES,SCOTT VANSTONE.Guide to Elliptic Curve Cryptography[M].2004.
  • 6华罗庚.数论导引[M].北京:科学出版社,1979.11-12.
  • 7[8]IEEE Standard Specifications for Public Key Cryptography[S].2000.

共引文献103

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部