摘要
提出了一种结合经验模态分解(EMD)和自适应短时傅里叶变换(STFT)的铁路货车滚动轴承故障诊断方法.该方法应用EMD方法把滚动轴承振动信号分解成有限个平稳的内蕴模型函数(IMF);根据滚动轴承故障信号的分布特征,应用以三阶B样条函数作为窗函数、在不同频段自适应选取窗长的自适应STFT对第一个IMF分量进行时频分析和故障信息提取.本文还对197726型货车滚动轴承在外圈剥离、内圈剥离两种故障状态下的振动信号做了分析,结果表明,该方法可以有效地在时频域上获取故障信息,为铁路货车滚动轴承故展诊断提供了一种新的方法.
In this paper, a freight car rolling element bearings fault diagnosis method based on Empirical Mode Decomposition (EMD) and adaptive short-time Fourier transform (STFT) is proposed. Vibration signals collected from the rolling element bearings are firstly decomposed into a finite number of stationary Intrinsic Mode functions (IMFs). With the distributing characteristic of the fault signals, the adaptive transform using cubic B-splines as the window functions and optimizing the window bandwidth along the frequency axis is then applied to the time-frequency analysis and feature enhancement of the first IMF. The results of the analysis of vibration signals of 197726 type rolling element bearings with outer-race and inner-race faults show that the method can perform effectively in fault diagnosis of freight car rolling element bearings.
出处
《中央民族大学学报(自然科学版)》
2006年第3期253-258,270,共7页
Journal of Minzu University of China(Natural Sciences Edition)
基金
铁道科学研究院研发中心基金(2004YF5)资助
关键词
滚动轴承
故障诊断
EMD
自适应STFT
rolling element bearings
fault diagnosis
Empirical Mode Decomposition(EMD)
adaptive short-time Fourier transform