期刊文献+

基于EMD和自适应STFT的货车滚动轴承故障诊断 被引量:2

Fault Diagnosis of Freight Car Rolling Element Bearings with EMD and Adaptive Short_Time Fourier Transform
下载PDF
导出
摘要 提出了一种结合经验模态分解(EMD)和自适应短时傅里叶变换(STFT)的铁路货车滚动轴承故障诊断方法.该方法应用EMD方法把滚动轴承振动信号分解成有限个平稳的内蕴模型函数(IMF);根据滚动轴承故障信号的分布特征,应用以三阶B样条函数作为窗函数、在不同频段自适应选取窗长的自适应STFT对第一个IMF分量进行时频分析和故障信息提取.本文还对197726型货车滚动轴承在外圈剥离、内圈剥离两种故障状态下的振动信号做了分析,结果表明,该方法可以有效地在时频域上获取故障信息,为铁路货车滚动轴承故展诊断提供了一种新的方法. In this paper, a freight car rolling element bearings fault diagnosis method based on Empirical Mode Decomposition (EMD) and adaptive short-time Fourier transform (STFT) is proposed. Vibration signals collected from the rolling element bearings are firstly decomposed into a finite number of stationary Intrinsic Mode functions (IMFs). With the distributing characteristic of the fault signals, the adaptive transform using cubic B-splines as the window functions and optimizing the window bandwidth along the frequency axis is then applied to the time-frequency analysis and feature enhancement of the first IMF. The results of the analysis of vibration signals of 197726 type rolling element bearings with outer-race and inner-race faults show that the method can perform effectively in fault diagnosis of freight car rolling element bearings.
出处 《中央民族大学学报(自然科学版)》 2006年第3期253-258,270,共7页 Journal of Minzu University of China(Natural Sciences Edition)
基金 铁道科学研究院研发中心基金(2004YF5)资助
关键词 滚动轴承 故障诊断 EMD 自适应STFT rolling element bearings fault diagnosis Empirical Mode Decomposition(EMD) adaptive short-time Fourier transform
  • 相关文献

参考文献8

  • 1[1]NORDEN E,HUANG,ZHENG SHEN,etc.The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Nonstationary Time Series Analysis[J].Proc.R.Soc.Lond.A,1998,454:903~995.
  • 2杨宇,于德介,程军圣.基于EMD与神经网络的滚动轴承故障诊断方法[J].振动与冲击,2005,24(1):85-88. 被引量:144
  • 3沈国际,陶利民,徐永成,陈仲生.基于Wigner分布和经验模态分解的减速器故障诊断[J].航空动力学报,2005,20(2):236-239. 被引量:3
  • 4[4]D L JONES,TW PARKS.A High Resolution Data-adaptive Time-frequency Representation[J].IEEE Trans.Acoust.,Speech,Signal Processing,1990,38:2127 ~ 2135
  • 5[5]JONES D L,BARANIUK R G.A Simple Scheme for Adapting Time-frequency Representations[J].IEEE Trans.Signal Processing,1994,42:3530 ~ 3535
  • 6[6]B LIU,S RIEMENSCHNEIDER,Z SHEN.A Fast Adaptive Time-frequency Analysis Method and It's Application in Vibration Analysis[R].Morgantown,USA:West Virginia University,2004.
  • 7L·科恩.时-频分析:理论与应用,西安交通大学出版社,西安,1998.
  • 8赵志宇,邵诚,于云满.基于小波变换的滚动轴承故障诊断专家系统的研究[J].机械设计与研究,2005,21(1):50-52. 被引量:18

二级参考文献18

  • 1R Rubini, U Meneghetti. Application of the envelope and wavelet transform analysis for the diagnosis of incipient faults in ball bearings[J]. Mechanical Systems and Signal Processing, 2001, (2):287-302.
  • 2Paya B A, Esat I I .Artificaial Neural Network Based Fault Diagnostics of Rotating Machinery Using Wavelet Transforms sa a Preprocessor .Mechanical Systems and Signal Processing 1997 .11(5):751-765.
  • 3Huang N E, et al .The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlimear and Non-Stationary Time Series Analysis .Proc .R .Soc.Lond. A,1998,454:903-995.
  • 4Decker H J.Crack Detection for Aerospace Quality Spur Gears[R].NASA/TM-2002-211492,2002.
  • 5Staszewski W J,Worden K,Tomlinson G R.Time-Frequency Analysis in Gearbox Fault Detection Using the Wigner-Ville Distribution and Pattern Recognition[J].Mechanical Systems and Signal Processing,1997,11(5):673~692.
  • 6Dalpiaz G,Rivola A,Rubini R.Effectiveness and Sensitivity of Vibration Processing Techniques for Local Fault Detection in Gear[J].Mechanical Systems and Signal Processing,2000,14(3):387~412.
  • 7Baydar N,Andrew B.A Comparative Study of Acoustic and Vibration Signals in Detection of Gear Failures Using Wigner-Ville Distribution[J].Mechanical Systems and Signal Processing,2001,15(6):1091~1107.
  • 8Zhao Y,Atlas L E,Marks R J.The Use of Cone-Shaped Kernels for Generalized Time-Frequency Representations of Non-Stationary Signals[J].IEEE Transactions on Acoustic,Speech and Signal processing,1990,38:1084~1091.
  • 9Gillespie B W,Atlas L E.Optimizing Time-Frequency Kernels for Classification[J].IEEE Transactions on Signal Processing,2001,49(3):485~4961.
  • 10Huang N E,Shen Z,Long S R,et al.The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis[J].Proceedings of the Royal Society of London,1998,A454(1971):903~995.

共引文献163

同被引文献14

引证文献2

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部