期刊文献+

一类高维向量值双正交小波包 被引量:3

A Class of Biorthogonal Multivariate Vector-valued Wavelet Packets
下载PDF
导出
摘要 研究高维向量值双正交小波包的构造及性质.引进一类紧支撑高维向量值双正交小波包的概念.运用傅立叶变换、积分变换和算子理论,讨论了这种向量值双正交小波包的性质. This paper is to investigate the biorthogonal vector-valued wavelet packets in higher dimensions. A class of compactly supported biorthogonal vector-valued multivariate wavelet packets are defined and constructed. By using Fourier transform integral tramsform and operator theory,the properties of the biorthogonal multi- variate vector-valued wavelet packets are investigated and biorthogonality formulae are obtained.
出处 《河北大学学报(自然科学版)》 CAS 北大核心 2006年第6期565-569,共5页 Journal of Hebei University(Natural Science Edition)
基金 国家自然科学基金资助项目(10371105) 河南省自然科学基金资助项目(0211044800)
关键词 双正交 高维 向量值多分辨分析 向量值尺度函数 向量值小波包 biorthogonal multivariate vector-valued multiresolution analysis vector-valued scaling function vector-valued wavelet packets
  • 相关文献

参考文献7

  • 1张钦礼,张翠莲,曾大有,赵燕.具有奇偶性的多尺度小波[J].河北大学学报(自然科学版),2005,25(2):121-129. 被引量:4
  • 2田大增,哈明虎,田学东.一类连续小波的构造及其性质[J].河北大学学报(自然科学版),2006,26(4):341-344. 被引量:3
  • 3HE HAIBO,CHENG SHIJIE.Home network power-line communication signal processing based on wavelet packet analysis[J].IEEE Trans Power Dlivery,2005,20(3):1879-1885.
  • 4SHEN ZUOWEI.Notensor product wavelet packets in L2(Rs)[J].SIAM Math Anal,1995,26 (4):1061-1074.
  • 5陈清江,程正兴,冯晓霞.高维多重双正交小波包[J].应用数学,2005,18(3):358-364. 被引量:21
  • 6FOWLER J E,HUA L.Wavelet transforms for vector fields using omnidirectionally balanced multiwavelets[J].IEEE Trans Signal Processing,2005,50:3018-3027.
  • 7XIA XIANGGEN,GERONIMO J S,HARDIN D P,et al.Design of prefilters for discrete multiwavelet transforms[J].IEEE Trans Signal Processing,1996,44(1):25-35.

二级参考文献24

  • 1张钦礼,张翠莲,曾大有,赵燕.具有奇偶性的多尺度小波[J].河北大学学报(自然科学版),2005,25(2):121-129. 被引量:4
  • 2JIANG Q T. Orthogonal multiwavelets with optimum time_frequency resolution[J]. IEEE Trans Signal Proc, 1998, 46:830-844.
  • 3PLONKA G, STRELA V. From wavelets to multiwavelets, In Math Methods for Curves and Surfaces Ⅱ[M]. Nashville: Vanderbilt University Press, 1998.
  • 4GOODMAN T N T, LEE S L, TANG W S. Wavelets in wandering subspaces[J]. Trans Amer Math Soc, 1993, 338: 639-654.
  • 5GOODMAN T N T. LEE S L. Wavelets of multiplicity[J]. Trans Amer Math Soc, 1994, 342: 307-324.
  • 6STRELA V, HELLER P N, STRANG G, et al. The application of multiwavelet filter banks to image processing[J]. IEEE Trans on Signal Proc, 2000, 8: 548-563.
  • 7CHUI C K. An introduction to wavelets[M]. Boston: Academic Press, 1993.
  • 8程正兴.小波分析算法与应用[M].西安:西安交通大学出版社,1993..
  • 9ChuiCK.小波分析导论[M].西安:西安交通大学出版社,1994..
  • 10Toliyat H A,Abbaszadeh K,Rahimian M M, Olson L E. Rail defect diagnosis using wavelet packet decomposition[J]. IEEE Transactions on Industry Applications, ,2003,39(5) :1451-1461.

共引文献25

同被引文献20

  • 1张钦礼,张翠莲,曾大有,赵燕.具有奇偶性的多尺度小波[J].河北大学学报(自然科学版),2005,25(2):121-129. 被引量:4
  • 2陈清江,程正兴,冯晓霞.高维多重双正交小波包[J].应用数学,2005,18(3):358-364. 被引量:21
  • 3田大增,哈明虎,田学东.一类连续小波的构造及其性质[J].河北大学学报(自然科学版),2006,26(4):341-344. 被引量:3
  • 4杨守志,李尤发.具有高逼近阶和正则性的双向加细函数和双向小波[J].中国科学(A辑),2007,37(7):779-795. 被引量:30
  • 5EFROMOVICH S, LAKEY J, PEREYIA M, et al. Data-diven and optimal denoising of a signal and Recovery of its derivation using multiwavelets[J]. IEEE Trans Signal Processing, 2004,52 (3) : 628-635.
  • 6BACCHELLI S, COTRONEI M, SAUER T. Wavelets for multichannel signals[J]. Adv Appl Math, 2002,29:581-598.
  • 7MICCHELLI C A, SAUER T. Regularity of multiwavelets[J]. Adv Comput Math, 1997,7:455-545.
  • 8DAUBECHIES I. Painless nonorthogonal expansions[J]. Math Phys, 1986,27 : 1271-1283.
  • 9RON A, SHEN Z. Affine systems in L2 (Ra):the analysis of the analysis operator[J]. Funct Anal, 1997, 148(2):408- 447.
  • 10LI S, OGAWA H. Pseudoframes for Subspaces with Applications[J]. Fourier Anal Appl, 2004,10(4) : 409-431.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部