期刊文献+

ZnS作为空穴缓冲层的新型有机发光二极管 被引量:9

Organic Light-emitting Diodes with Nano-ZnS Thin Films as Hole Buffer Layer by RF Magnetron Sputtering
下载PDF
导出
摘要 采用磁控溅射方法在ITO表面沉积了不同厚度的ZnS超薄膜作为有机发光二极管(OLEDs)的缓冲层,使典型结构(ITO/TPD/Alq3/Al)的OLEDs的发光性能得到改善。ZnS缓冲层厚度对器件性能影响的实验结果表明,当ZnS缓冲层厚度为5nm时,器件电流密度提高了近2倍,亮度提高了2倍;当ZnS缓冲层厚度为10nm时,器件发光的电流效率提高18%,器件的性能得到改善。宽禁带的ZnS缓冲层对空穴从阳极到有机功能层的注入有阻碍作用,促进器件载流子平衡,提高了器件发光效率,改善了器件性能。 Since Tang and Van Slyke reported the first high efficiency organic light-emitting diodes (OLED) in 1987, indium tin oxide (ITO) has been the most investigated OLED anode material due to its high transparency, high conductivity, and, particularly, high work function. The treatment of the ITO surface usually has a strong influence on the performance of the OLED device, suggesting that the interface between the ITO and the organic layer is quite important. Furthermore, the hole mobility in the hole-transporting layer (TPD) and electron mobility in the electron transporting layer (Alq3) are 1 × 10^-3 and 5 × 10^-5 cm^2· V^-1·s^-1, respectively, resulting in an imbalance in electron and hole concentrations in the emission layer. It is very necessary to improve the balance of holes and electrons injected to the emitter layer. One efficient method to improve the performance of OLED is to insert a buffer layer at the interface between the ITO anode layer and organic layer. We report OLEDs using ZnS ultra-thin film by RF magnetron sputtering as a hole injecting buffer layer with different thickness. The device with a typical structure of ITO/ZnS/TPD/Alq3/Al (TPD: N, N'- diphenyl-N, N'-bis ( 3-methylphenyl ) -1,1 '-biphenyl-4, 4'-diamine, Alq3 : tris ( 8-quinolinolato ) -aluminum ) performed a good electroluminescent properties compared with that without ZnS buffer layer. The investigation on the effects of the ZnS thickness showed that the diode with 5 nm ZnS buffer layer double its current density and luminance, and the current efficiency of the devices with 10 nm ZnS is improved by about a factor of eighteen percent compared with the devices without buffer layer. ZnS can be expected as a good buffer layer material due to its wide band gap, thus blocks part of the injected holes from the ITO anode to the organic layer(TPD) and improves the balance of hole and electron injections in the devices.
机构地区 暨南大学物理系
出处 《发光学报》 EI CAS CSCD 北大核心 2006年第6期877-881,共5页 Chinese Journal of Luminescence
基金 广东省自然科学基金资助项目(06025173)
关键词 有机发光二极管 ZnS超薄膜 空穴缓冲层 电流效率 OLEDs ZnS thin film hole buffer layer current efficiency
  • 相关文献

参考文献15

  • 1Staudigel J,Stoèssel M,Steuber F,et al.A quantitative numerical model of multilayer vapor-deposited organic light emitting diodes[J].J.Appl.Phys.,1999,86(7):3895-3910.
  • 2Tadayyon S M,Grandin H M,Griths K.CuPc buffer layer role in OLED performance:a study of the interfacial band energies[J].Organic Electronics,2004,5(4):157-166.
  • 3Jiang H,Zhou Y,Ooi B S,et al.Improvement of organic light-emitting diodes performance by the insertion of a Si3N4 layer[J].Thin Solid Films,2000,363(1-2):25-28.
  • 4Deng Z B,Ding X M,Lee S T,et al.Enhanced brightness and efficiency in organic electroluminescent devices using SiO2 buffer layers[J].Appl.Phys.Lett.,1999,74(15):2227-2279.
  • 5Kurosaka Y,Tada N,Ohmori Y,et al.Improvement of electrode/organic layer interfaces by the insertion of monolayer-like aluminum oxide film[J].Jpn.J.Appl.Phys.,1998,37(7B):L872-L875.
  • 6Chan I M,Hong F C.Improved performance of the single-layer and double-layer organic light emitting diodes by nickel oxide coated indium tin oxide anode[J].Thin Solid Film,2004,450(2):304-311.
  • 7Lu H T,Yokoyama M.Enhanced emission in organic light-emitting diodes using Ta2O5 buffer layer[J].Solid-State Electronics,2003,47(8):1409-1412.
  • 8Zhang Z F,Deng Z B,Liang C J,et al.Organic light-emitting diodes with a nanostructured TiO2 layer at the interface between ITO and NPB layers[J].Displays,2003,24(4-5):231-234.
  • 9仲飞,刘彭义,任思雨.磁控溅射法制备TiO_2空穴缓冲层的有机发光器件[J].功能材料与器件学报,2005,11(4):461-465. 被引量:5
  • 10Qiu Y,Gao Y D,Wang L D,et al.Efficient light emitting diodes with teflon buffer layer[J].Synth.Met.,2003,130(3):235-237.

二级参考文献53

  • 1李蕾,物理学报,1998年,47卷,1536页
  • 2Sun X,Phys Rev B,1996年,53卷,15481页
  • 3CHEN W, MALM J O, ZWILLER V, et al. Energy structure and fluorescence of Eu2+ in ZnS: Eu nanoparticles [J]. Phys.Rev. B, 2000, 61(16):11021-11024.
  • 4CHEN W, MALM J O, ZWILLER V, et al. Size dependence of Eu2+ fluorescence in ZnS:Eu nanoparticles [J]. J. Appl.Phys., 2001, 89(5) :2671-2675.
  • 5SOOKLAL K, CULLUM B S, ANGEL S M, et al. Photophysical properties of ZnS nanoclusters with spatially localized Mn2 + [ J].J. Phys. Chem., 1996, 100:4551-4555.
  • 6BHARGAVA R N, GALLAGHER D. Optical properties manganese-doped nanocrystal ofZnS [J]. Phys. Rev. Lett., 1994, 72(3) :416-419.
  • 7VACASSY R, SCHOLZ S M, DUTTA J, et al. Synthesis of controlled spherical zinc sulfide particles by precipitation from homogeneous solutions [J]. J. Am. Ceram. Soc., 1998,81(10) :2699-2705.
  • 8ZHU Yingchun, BANDO Yoshio, XUE Dongfeng. Spontaneous growth and luminescence of zinc sulfide nanobelts [ J ]. Appl.Phys. Lett., 2003, 82(11):1769-1771.
  • 9YANG P, LU M, XD D, et al. ZnS nanocrystals co-activated by transition metals and rare-earth metals--a new class of luminescent materials [J]. J. Lumin., 2001, 93:101-105.
  • 10Luminescence in Solids [M]. Edited by Jilin Inst. of Phys., Chinese Academy of Sciences and Uni. of Sci. and Techn. of China, 1976 (in Chinese).

共引文献39

同被引文献94

引证文献9

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部