期刊文献+

纤锌矿结构ZnO中定位Ga-N共掺杂对p型掺杂效率的影响 被引量:3

Effects of Site-selective Ga-N Codoping on p-type Doping Efficiency of Wurtzite ZnO
下载PDF
导出
摘要 采用第一性原理和密度泛函理论的方法,计算未掺杂、N单掺杂和Ga-N共掺杂纤锌矿结构ZnO的总能、电荷密度和能带结构。总能计算表明,Ga原子的共掺杂使总能极大地降低,从而显著提高杂质N原子在ZnO中的稳定性。电荷密度分布显示,总能的降低主要是Ga-N共掺杂后Ga原子的3d态和N原子的2p态电子之间的强杂化相互作用所致。特别是在Ga原子的负电荷和N原子的正电荷沿c轴排成一线的共掺杂构型中,较大的局域极化场的变化引起价带顶向禁带中的大分裂,降低了N受主的激活能,将空穴的浓度提高了三个量级,有效地提高p型掺杂效率。 ZnO has become a promising material for ultraviolet light emitting diodes and lasers, transparent high power electronic devices dut to their wide direct band gap and large exciton binding energy. Undoped ZnO exhibits intrinsic n-type Conductivity, and it is, therefore, difficult to achieve p-type ZnO. Among group-V dopants, N is considered to be a shallow p-type impurity; however, there are still many difficulties for using N as dopant. Recently, much effort has been devoted to fabricate p-type ZnO with codopants. So it is important to understand the codoping effect on electronic structures of wurtzite ZnO. N dopant stability and p-type doping efficiency of wurtzite ZnO were investigated by calculating the total energies, charge densities and band structures. The differences of total energy between the undoped configuration and N mono-doped, Ga-N codoped configuration Ⅰ and Ⅱ are △ET-N = 1.22 eV, △ET-Ⅰ = - 2.89 eV and △ET-Ⅱ = -2.84 eV, respectively. This shows that the N dopant stability is improved by Ga codopant. This resuit is attributable to the strong hybridization between the Ga 3d and N charge density differences. Furthermore, the polarization is significantly ch 2p states according to the induced anged in the Ga-N codoped configu- ration Ⅱ where the negative charges of the Ga atom and the positive charges of the N atom align along the c-axis. The energy band structures are thus clearly influenced. The twofold-degenerate Г5v level of the top of the valence band for undoped ZnO splits into Г9v and Г^(1)7v levels and shifts into the band gap to further separate with the non-degenerate Г1v level (labelled as Г(2)7v). Then the activation energy of the N acceptor is lowered due t2o the splitting of the top of the valence band. Finally, according to the relationship between the hole concentration and the activation energy, the hole concentration under the modulation of configuration Ⅱ is enhanced more than three orders of magnitude.
出处 《发光学报》 EI CAS CSCD 北大核心 2006年第6期917-921,共5页 Chinese Journal of Luminescence
基金 国家自然科学基金(60376015 90206030 60336020 10134030) 国家"973"计划(001CB610505) 福建省科技计划(2004H054 E0410007)资助项目
关键词 氧化锌 P型掺杂 能带结构 ZnO p-type doping band structure
  • 相关文献

参考文献18

  • 1Pearton S J,Norton D P,Ip K,et al.Recent advances in processing of ZnO[J].J.Vac.Sci.Technol.B,2004,22(3):932-948.
  • 2Lee E C,Kim Y S,Jin Y G,et al.Compensation mechanism for N acceptors in ZnO[J].Phys.Rev.B,2001,64(8):085120.
  • 3Park C H,Zhang S B,Wei S H.Origin of p-type doping difficulty in ZnO:The impurity perspective[J].Phys.Rev.B,2002,66(7):073202.
  • 4Barnes T M,Olson K,Wolden C A.On the formation and stability of p-type conductivity in nitrogen-doped zinc oxide[J].Appl.Phys.Lett.,2005,86(11):112112.
  • 5Wang L G,Zunger A.Cluster-doping approach for wide-gap semiconductors:The case of p-type ZnO[J].Phys.Rev.Lett.,2003,90(25):256401.
  • 6Li X,Keyes B,Asher S,et al.Hydrogen passivation effect in nitrogen-doped ZnO thin films[J].Appl.Phys.Lett.,2005,86(12):122107.
  • 7Wang L,Giles N C.Determination of the ionization energy of nitrogen acceptors in zinc oxide using photoluminescence spectroscopy[J].Appl.Phys.Lett.,2004,84(16):3049-3051.
  • 8Yamamoto T,Katayama-Yoshida H.Solution using a codoping method to unipolarity for the fabrication of p-type ZnO[J].Jpn.J.Appl.Phys.Part 2,1999,38(2B):L166-L169.
  • 9Joseph M,Tabata H,Kawai T.p-type electrical conduction in ZnO thin films by Ga and N codoping[J].Jpn.J.Appl.Phys.Part 2,1999,38(11A):L1205-L1207.
  • 10Nakahara K,Takasu H,Fons P,et al.Interactions between gallium and nitrogen dopants in ZnO films grown by radical-source molecular-beam epitaxy[J].Appl.Phys.Lett.,2001,79(25):4139-4141.

二级参考文献9

  • 1刘大力,杜国同,张源涛,王新强,杨天鹏,杨晓天,赵佰军,杨洪军,刘博阳,张景林.ZnO薄膜的光抽运紫外激射[J].发光学报,2004,25(4):389-392. 被引量:4
  • 2Lee E C,Chang K J.Possible p-type doping with group-Ⅰ elements in ZnO[J].Phys.Rev.B,2004,70(11):1152101-1152104.
  • 3Paul Erhart,Andreas Klein,Karsten Albe.First-principles study of the structure and stability of oxygen defects in zinc oxide[J].Phys.Rev.B,2005,72(8):0852131-08521317.
  • 4Zhang S B,Wei S H,Zunger A.Intrinsic n-type versus p-type doping asymmertry and the defect physics of ZnO[J].Phys.Rev.B,2001,63(7):0752051-0752057.
  • 5Oba F,Nishitani S R,Isotani S,et al.Energetics of native defects in ZnO[J].J.Appl.Phys.,2001,90 (2):824-828.
  • 6Park C H,Zhang S B,Wei S H.Origin of p-type doping difficulty in ZnO:The impurity perspective[J].Phys.Rev.B,2000,66 (7):0732021-0732023.
  • 7Lee E C,Chang K J.Compensation mechanism for N acceptors in ZnO[J].Phys.Rev.B,2004,64 (8):0851201-0851204.
  • 8Wardle M G,Goss J P,Briddon P R.Theory of Li in ZnO:A limitation for Li-based p-type doping[J].Phys.Rev.B,2005,71(15):1552051-15520510.
  • 9许小亮,杨晓杰,谢家纯,徐传明,徐军,刘洪图,施朝淑.以硅为衬底的ZnO p-n结的制备及其结构、光学和电学特性[J].发光学报,2004,25(3):295-299. 被引量:4

共引文献4

同被引文献27

引证文献3

二级引证文献77

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部