期刊文献+

注入能量对硅片的表面性能影响的研究 被引量:1

Research on the Effects of Surface Performance of Silicon Wafers Under Different C^+ Implantation Energy
下载PDF
导出
摘要 以单晶硅(111)作为研究对象,选用注入剂量为8×1015ions/cm2,注入能量分别为50,80和120 keV的C+注入方法对单晶硅片进行离子注入.利用原位纳米力学测试系统对C+注入前后硅片的纳米硬度和弹性模量进行测定,在UMT-2型微摩擦试验机上对C+注入前后硅片开展往复滑动微摩擦实验,研究其摩擦系数和声发射信号的变化,采用T-1000型表面轮廓仪测量C+注入前后硅片的磨损量,利用S-3000N型扫描电子显微镜表征C+注入前后硅片的磨损机理.结果表明,C+注入能量为50 keV硅片的纳米硬度和弹性模量大幅减小,而其他2种注入能量的纳米硬度和弹性模量与单晶硅相差较小;C+注入后硅片的减摩效果得到了提高,在小载荷下其摩擦系数大幅度降低,但在载荷达到一定值后,摩擦系数和声发射信号会迅速增加并且产生磨痕;注入能量为120 keV的硅片的减摩效果最佳,注入能量为80 keV和120 keV的硅片的抗磨性能较好;C+注入前后单晶硅片的磨损形貌在小载荷下以黏着磨损为主. The single crystal silicon(111) wafers were taken as examples and implanted by carbon ion with an implantation dose of 8× 10^15 ions/cm^3 and different energies of 50, 80 and 120 keV, respectively. The nano-hardness and elastic modulus of silicon wafers were measured on the insitu nano mechanical testing system before and after C^+ implantation. The reciprocating sliding tests on silicon wafers were performed on the UMT-2 Micro-tribometer, which attempted to investigate the variation of friction coefficient and acoustic emission energy before and after C^+ implantation. Wear volumn of silicon wafers before and after C^+ implantation were characterized using a T-1000 profilometer. The morphologies of worn surface were observed with the S- 3000N Scanning Electron Microscope in order to gain informations on the wear mechanisms. The results demonstrate that the nano-hardness and elastic modulus of silicon wafer under the implantation energy of 50 keV decreased to a gies of 80 and 120 keV were close to that of great extent. But those of the implantation enersingle crystal silicon. Friction-reducing effect of the C^+ implanted silicon wafers improved and its coefficient of friction also decreased greatly under a light load. But when the load reached to a certain value, the coefficient of friction and acoustic emission energy increased sharply and the worn trace occurred on the wafer surface. The effects of friction-reducing of silicon wafer under implantation energies of 120 keV were the best and the silicon wafers under implantation energies of 80 keV and 120 keV exhibited the better anti-wear performance. Adhesive wear was the main mechanism under a light load for the silicon wafers before and after C^+ implantation.
出处 《中国矿业大学学报》 EI CAS CSCD 北大核心 2006年第6期713-717,731,共6页 Journal of China University of Mining & Technology
基金 国家自然科学基金项目(50405042) 国家杰出青年科学基金项目(50225519) 高等学校优秀青年教师教学科研奖励计划项目
关键词 单晶硅 注入能量 力学性能 摩擦磨损性能 single-crystal silicon implantation energy mechanics property microtribology
  • 相关文献

参考文献10

  • 1刘莹,温诗铸.微机电系统中微摩擦特性及控制研究[J].机械工程学报,2002,38(3):1-5. 被引量:45
  • 2孙蓉,徐洮,薛群基.单晶硅表面改性及其微观摩擦学性能研究进展[J].摩擦学学报,2004,24(4):382-385. 被引量:15
  • 3MUHLSTEIN C L,HOWE R T,RITCHIE R O.Fatigue of polycrystalline silicon for microelectromechanical system applications:crack growth and stability under resonant loading conditions[J].Mechanics of Materials,2004,36:13-33.
  • 4GATZEN H H,BECK M.Investigations on the friction force anisotropy of the silicon lattice[J].Wear,2003,254:1122-1126.
  • 5DEARNALEY G.Nuclear techniques and equipment for non-semi-conductor applications of ion implantation[J].Inst Methods,1980,189:117-121.
  • 6BENKHEROUROU O,SAHNOUNE S,DJABI M,et al.Analysis of photoemission lines in silicon nitrided layer formed by low-energy nitrgen ion implantation in silicon[J].Vacuum,1999,53:427-433.
  • 7UEDA M,BELOTO A F,REUTHER H,et al.Plasma immersion ion implantation of nitrogen in Si:formation of SiO2,Si3N4 and stressed layers under thermal and sputtering effect[J].Surface and Coating Technology,2001,136:244-248.
  • 8GUPTA B K,BHUSHAN B.Nanoindentation studies of ion implanted silicon[J].Surface and Coatings Technology,1994,68-69:564-570.
  • 9LEKKI J,STATCHURA Z,PREIKSCHAS N,et al.Friction and wear of argon-implanted siliconcrystals[J].Journal Mater Res,1994,9:91-95.
  • 10KODALI P,HAWLEY M,WALTER K C,et al.Tribological properties of carbon-and nitrogen-implanted Si(100)[J].Wear,1997,205:144-152.

二级参考文献10

共引文献53

同被引文献6

  • 1孙蓉,徐洮,薛群基.单晶硅表面改性及其微观摩擦学性能研究进展[J].摩擦学学报,2004,24(4):382-385. 被引量:15
  • 2[3]Muhlstein C L,Howe R T,Ritchie R O.Fatigue of polyerystalline silicon for microelectromechanical system applications:crack growth and stability under resonant loading conditions[J].Meehanics of Materials,2004,36:13-33.
  • 3[4]Gatzen H H,Beck M Investigations on the friction force anisotropy of the silicon lattice[J].Wear,2003,254:1122-1126.
  • 4[5]Miyamoto T,Miyake S,Kaneko R.Wear resistance of c+implanted silicon investigated by scanning probe microscopy[J].Wear,1993,162/164:733-738.
  • 5[6]Kodali P,Hawley M,Walter K C,et al.Tribological properties of carbon-and nitrogen-implanted Si(100)[J].Wear,1997,205.144-152.
  • 6刘莹,温诗铸.微机电系统中微摩擦特性及控制研究[J].机械工程学报,2002,38(3):1-5. 被引量:45

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部