期刊文献+

基于知识的分层遗传算法 被引量:3

A Knowledge-Based Hierachical Genetic Algorithm
下载PDF
导出
摘要 传统遗传算法缺乏对进化过程知识的有效提取和利用,存在早熟收敛.在遗传算法的种群进化层上,引入文化算法的信度空间,提出一种具有知识引导功能的分层遗传算法.算法由底层种群进化层和上层知识进化层构成.结合遗传操作过程,提取4类知识并给出兵体定义.详细阐述了联系上下层的样本选取函数、知识更新函数和进化引导函数,并提出一种基于地势知识轮盘赌选择的新型个体替代策略.针对3组标准测试函数的仿真结果表明,4类知识在不同进化阶段对种群的影响程度不同.状况知识在进化早期起主导作用,规范知识和地势知识在某局部优势区域具有较强引导作用,历史知识引导搜索区域脱离局部较优点,从而有效避免早熟收敛,提高进化效率. The knowledge about evolutionary process is not effectively abstracted and used in the genetic algorithm(GA) which is a premature convergence. A belief space in the culture algorithm was introduced to the genetic algorithm. A hierachical genetic algorithm with knowledge induction was proposed, which was composed of a lower population evolution layer and a upper knowledge evolution layer. Four kinds of knowledge were abstracted and defined through the analysis of evolutionary process. The sample choosing function, knowledge updating function and evolution inducting function were described in detail, which connect a lower layer and a upper layer. A novel substitute strategy to individuals based on roulette selection of topography knowledge was proposed. The simulation results of three benchmark functions indicate that four kinds of knowledge play the different role in different phases. The status knowledge influence evolution in the early phase. The limited optimum space is leading by normative and topography knowledge. The search space is escaped from optimum inducted by history knowledge so as to avoid premature convergence and advance the efficiency of evolution.
出处 《中国矿业大学学报》 EI CAS CSCD 北大核心 2006年第6期772-777,共6页 Journal of China University of Mining & Technology
基金 中国博士后科学基金项目(2005037225) 江苏省博士后基金项目([2004]300)
关键词 知识 分层 遗传算法 knowledge hierachical genetic algorithm
  • 相关文献

参考文献11

  • 1谢金星.进化计算简要综述[J].控制与决策,1997,12(1):1-7. 被引量:23
  • 2范磊,阮怀忠,焦誉,罗文坚,曹先彬.用归纳学习引导进化[J].中国科学技术大学学报,2001,31(5):565-570. 被引量:7
  • 3曹先彬,许凯,章洁,王煦法.基于生命期引导的生态进化模型[J].软件学报,2000,11(6):823-828. 被引量:5
  • 4顾慧,龚育昌,赵振西.基于知识模型的改进遗传算法[J].计算机工程,2000,26(5):19-20. 被引量:7
  • 5SEBAG M,RAVISE C,SCHOENAUER M.Controlling evolution by means of machine learning[J].Evolutionary Programming,1996.57-66.
  • 6HO N B,TAY J C.GENACE:an eeffient cultural algorithm for soling the flexible job-shop problem[C]//Proc.2004 Congress on Evolutionary Computation.Chongqin:World Scientific Publishing Co.Pte Ltd Singapore,2004:1759-1766.
  • 7JIN Xi-dong.Solving constrained optimization problems using cultural algorithms and regional schemata[D].Wayne State University,2001.
  • 8ROBERT G.REYNLDS,WILLIAM S.Problem solving using cultural algorithms[C]// Proc.First IEEE Conference on Evolutionary Computation.Orlando:IEEE Piscataway,1994:645-650
  • 9FRANKLIN B,BERGERMAN M.Cultural algorithms:concepts and experiments[C]// Proc.2000 Congress on Evolutionary Computation.California:IEEE Piscataway,2000:1245-1251.
  • 10PENG Bin,REYNOLDS R G.Culture algorithms:knowledge learning in dynamic environments[C]//Proc.2004 Congress on Evolutionary Computation.Chongqin:World Scientific Publishing Co.Pte Ltd Singapore,2004:1751-1758.

二级参考文献12

共引文献34

同被引文献38

  • 1郭艳红,邓贵仕.基于事例的推理(CBR)研究综述[J].计算机工程与应用,2004,40(21):1-5. 被引量:76
  • 2巩敦卫,郝国生,周勇,孙晓燕.分层交互式进化计算及其应用[J].控制与决策,2004,19(10):1117-1120. 被引量:15
  • 3Reynolds R,Stefan J.Web services,Web searches,and cultural algorithms[C]//IEEE International Conference on Systems,Man and Cybernetics, Volume 4,2003 : 3982-3987.
  • 4Reynolds R,Al-Shehri H.The use of cultural algorithms with evolutionary programming to guide decision tree induction in large databases[C]//IEEE International Conference on Computational Intelligence, 1998 : 541-546.
  • 5Reynolds R,Chan J.Knowledge-based self-adaptation in evolutionary programming using cultural algorithms[C]//IEEE International Conference on Evolutionary Computation, 1997 : 71-76.
  • 6Reynolds R,Zhu S.Knowledge-based function optimization using fuzzy cultural algorithms with evolutionary programming[J].IEEE Transactions on Systems,Man,and Cybernetics,Part B:Cybemetics, 2001,31( 1 ): 1-18.
  • 7陆植.叉车设计[M].北京:机械工业出版社,2004.
  • 8ONG S K, ANDREW Y C N, XU Q L. Design reuse in development modeling, analysis and optimization [ M ]. New World Science Pub Co, 2008.
  • 9TAKAGI H. Interactive evolutionary computation: Fusion capabilities of EC optimization and human evaluation Proceedings of the IEEE, 2001,89 (9) :1275-1296. product Jersey: of the [JJ.
  • 10PARMEE I C ,ABRAHAM J A R. Supporting implicit learning via the visualisation of COGA multi-objective data [C]. Porland:Proceedings of the 2004 Congress on Evolutionary Computation, 2004:395-402.

引证文献3

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部