摘要
位置正解是并联机器人机构应用的基础,本文探讨了人工神经网络在并联机器人机构位置正解求解中的应用。采用BP网络,利用位置逆解结果,通过训练学习,实现操作手从关节变量空间到工作变量空间的非线性映射;从而求得6-SPS并联机器人运动学正解。为提高正解结果精度,采用迭代计算进行误差补偿。给出了一种并联机器人操作手的仿真实例,计算结果表明:该法迭代次数少,计算精度高且计算速度接近机器人实时控制的要求。
The nonhnear mapping from the joint-variable-space to the operation-variable-space for the platform is accomphshed with BP neural network after training and learning. The training data comes from the inversed kinematical model of the platform. To improve the accuracy of the solution, an iterative approach is used to compensate for the off set error. Numerical results have shown that the accurate solutions can be obtained by performing only a few iteration steps and the computation speed can meet the requirements of the robot's real time control system.
出处
《机电产品开发与创新》
2006年第6期6-8,共3页
Development & Innovation of Machinery & Electrical Products
关键词
并联机器人
运动学
误差补偿
BP算法
Stewart platform
Kinematics
Error compensation
BP arithmetic