期刊文献+

小波分解及神经网络在海浪预报中的应用

Application of Wavelet Decomposition and Neural Network in Sea Wave Prediction
下载PDF
导出
摘要 提出采用小波分解与递推平方根法神经网络模型相结合的方法进行海浪预报。采用小波分析方法既能把握海浪的发展变化趋势,又能简化预报模型,同时基于递推平方根法的神经网络模型预报方法不仅收敛速度快,又能很好地提高精度,减少计算量。即先将不规则海浪信号用小波分析方法进行多尺度一维分解,得到相对简单、规则的准周期分量信号,然后用一种基于递推平方根法的神经网络模型对各重构信号进行预报,最后对预报结果进行集成。最终的仿真结果验证了该方法的有效性。 A new method of the sea wave prediction is presented in this paper, which uses both the method of wavelet decomposition and the neural network model based on recursive square root. Because the trend of the motion of the sea wave could be obtained easily and the model for the sea wave prediction could be simplified when the method of wavelet is employed. Further more, the method using neural network model based on recursiv~ square root methods can not only easily be carried out with rapid constringency, but also can improve the precision of the prediction with much less computing step. First in this paper the irregular sea waves are decomposed by multilevel 1 - D wavelet to gain relative simple and regular period signals. Then the neural network model based on recursive square - root methods is used to predict the reconstructed signals. At last, the results of the prediction are composed. Finally, the results of the simulation experiments show that this method is effective.
出处 《计算机仿真》 CSCD 2006年第12期107-109,229,共4页 Computer Simulation
关键词 小波分解 递推平方根法 神经网络 海浪预报 Wavelet decomposition Recursive square root Neural networks Sea wave prediction
  • 相关文献

参考文献4

二级参考文献14

  • 1Lu Kongkuo, Chen Zengqiang & Yuan ZhuzhiDepartment of Automation, Nankai University, Tianjin 300071, P.R.China(Received July 5, 2001).Modelling of the Relaxation Least Squares-Based Neural Networks and Its Application[J].Journal of Systems Engineering and Electronics,2002,13(2):16-21. 被引量:1
  • 2樊淑趁,耿麦香,许建宾.论数字信号处理中加窗的影响及窗函数的选择原则[J].山西矿业学院学报,1995,13(4):347-350. 被引量:4
  • 3冉启文.小波变换与分数傅里叶变换理论及应用[M].北京:国防工业出版社,2002.15-42.
  • 4从爽.神经网络、模糊系统及其在运动控制中的应用(第1版)[M].合肥:中国科技大学出版社,2001..
  • 5The WAMDI group. The WAM model-a third generation cean wave prediction model[J]. J.Phys. Oceanogr., 1988,18: 1775-1810.
  • 6Zhang Q,Benveniste A.Wavelet Network[J].IEEE Trans.on Neural Networks,1992,3(6):889-898.
  • 7narenda K S, Parthasarathy K. Identification and control of dynamical systems using neural networks [J]. IEEE Trans .On Netural Networks, 1990,1 (1) :4 - 27.
  • 8Li Xiang, Chen Zengqiang, Yuan Zhuzhi, Chen G R. Generating chaos by an Elman network [J]. IEEE Trans. On Circuits and Systems,2001,48(9) :1126 - 1131.
  • 9Vicken Kasparian, Celar Batur, Zheng H. Davidon least square - based learning algorithm for feedforward neural networks [J].. Neural Network, 1994,7 (4): 661 - 670.
  • 10Chen Zengqiang, Lin Maoqiong and Yuan Zhuzhi. Global convergence of minimum variance self - tuning scheme based upon damped least squares [J].. Asian Journal of Control,2000,2(1) :50 -56.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部