期刊文献+

一阶参数不确定滞后过程的鲁棒PID控制器设计 被引量:2

Design of a Robust PID Controller for First-order Plus Dead Time Processes with Parametric Uncertainties
下载PDF
导出
摘要 提出一种针对一阶参数不确定滞后过程的鲁棒PI/PID控制器优化设计方法。首先基于D-分割法技术,给出确定一阶参数不确定滞后过程的整个PI/PID控制器的可行鲁棒稳定域算法;在定义一个与控制器给定点跟踪性能、鲁棒性能和抗扰动性能相关的目标函数的基础上,给出PI/PID控制器设计的约束优化问题;最后应用一种启发式粒子群优化(PSO)算法对该约束问题进行求解。仿真结果表明,所提出的方法可得到更小的调节时间、更小的超调、较强鲁棒性和更好的抗扰动性能,表明了所提出的方法的有效性。 An optimal PI/PID controller design approach for first - order plus dead time (FOPDT) processes with parametric uncertainties is presented. First, based on the D - partition technique, the method for determining the entire PI/PID admissible robust stabilizing domain for FOPDT systems with parametric uncertainties is constructed. Then, a constraint optimization problem is derived by defining an object function related to controller performance attributes such as set - point tracking, robustness and disturbance rejection. The problem is then solved using a heuristic algorithm called particle swarm optimization (PSO). Simulation results show that less settling time, less overshoot, higher robustness and better disturbance rejection are obtained using the proposed method. The examples show the validity of the proposed design method.
出处 《计算机仿真》 CSCD 2006年第12期174-178,共5页 Computer Simulation
基金 国家自然科学基金资助项目(60174028) 博士点基金资助项目(20040288002)
关键词 比例积分控制器 比例积分微分控制器 时滞 参数不确定 粒子群优化 鲁棒性 PI controller PID controller Time - delay Parameter uncertainties PSO Robustness
  • 相关文献

参考文献8

  • 1N Minorsky.Directional Stability of Automatically Steered Bodies[J].J Amer Soc Nav Eng,1922,42(2):280-309.
  • 2J B He,Q G Wang,T H Lee.PI/PID controller tuning via LQR approach[J].Chem Eng Sci,2000,55 (13):2429-2439.
  • 3R Toscano.A simple robust PI/PID controller design via numerical optimization approach[J].J Process Control.2005,15 (1):81-88.
  • 4李银伢,盛安冬,王远钢.参数不确定时滞系统的鲁棒PID控制[J].控制与决策,2004,19(10):1178-1182. 被引量:9
  • 5S Ruan,J Wei.On the zeros of transcendental functions with applications to stability of delay differential equations with two delays[J].Dynamics of Continuous,Discrete and Impulsive Systems,Series A:Mathematical Analysis,2003,10(6):863-874.
  • 6R C Eberhart,J Kennedy.A new optimizer using particle swarm theory[C].Proc of the 16th International Symposium on Micro and Human Machine Science,Piscataway,1995.39-43.
  • 7Y Shi,R C Eberhart.Particle swarm optimization:developments,applications and resources[C].Proc IEEE Int Conf Evol Comput,Piscataway,2001.81-96.
  • 8O Yaniv,M Nagurka.Design of PID controllers satisfying gain margin and sensitivity constraints on a set of plants[J].Automatica,2004,40(1):111-116.

二级参考文献12

  • 1Astrom K J, Hagglund T. PID Controllers: Theory,Design and Tuning [M]. Research Triangle Park:Instrument Society of American, 1995.
  • 2Kimura H. Robust stability for a class of transfer functions [J]. IEEE Trans on Automatic Control, 1984, 29(9) :788-793.
  • 3Keel L H, Bhattacharyya S P. Robust, fragile or optimal [J]. IEEE Trans on Automatic Control, 1997, 42(8): 1098-1125.
  • 4Silva G J, Datts A, Bhattacharyya S P. On the stability and controller robustness of some popular PID tuning rules [J]. IEEE Trans on Automatic Control, 2003, 48(9):1638-1641.
  • 5Silva G J, Datta A, Bhattacharyya S P. Robust control design using the PID eontroller[A]. Proc of the 41st IEEE Conf on Decision and Control[C]. Las Vegas,2002. 1313-1318.
  • 6Ziegler J G, Nichols N B. Optimum settings for automatic controllers[J]. IEEE Trans on ASME, 1942,64:759-768.
  • 7Smith O J. A controller to overcome dead time[J].ISA J, 1959,6 (2): 28-33.
  • 8Soylemez M T, Munro N, Baki H. Fast calculation ofstabilizing PID controllers [J]. Automatica, 2003, 39(1):121-126.
  • 9Ho M T, Darta A, Bhattacharyya S P. A linear programming characterization of all stabilizing PID controllers [A]. Proc of the American Control Conf[C ].Albuquerque, 1997. 3922-3928.
  • 10Fu M, Olbrot A W, Polis M P. Robust stability for time-delay systems: The edge theorem and graphical tests[A]. Proc of the 27th Conf on Decision and Control[C]. Austin,1988. 98-104.

共引文献8

同被引文献33

引证文献2

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部