期刊文献+

基于阶段评价的BP及在股价预测中的应用 被引量:2

BP Based on Phase Evaluation and Its Application in Stock-price Forecasting
下载PDF
导出
摘要 研究了BP中收敛速度慢、局部极小值的问题,针对现有研究中的改进方法对BP的性能提升有限,从疲劳的角度出发,提出了一种新的改进方法—阶段化评价法(Phase Eva luation),进行一阶段学习后对性能指标进行评价,并用于调整下一阶段学习方式。改进后的BP网络具有收敛速度快、稳定性强,易于跳出局部极小值的特点。为验证阶段化评价法的有效性,将其用于股票价格的预测与分析,在对股票数据的组织上不是直接拟合股价走势曲线,而是拟合期望收益率的出现概率。实验结果表明基于阶段评价的BP不但学习性能比传统BP高,而且结合文中的股票数据组织方式可以提高实际股票交易的操作性,获得较好的年投资收益率。 The problem of low speed convergence and local minimum in BP and the inapparent upgrade of performance of current reformed BP are studied. From the viewpoint of tiredness, a newly improved method-Phase Evaluation is put forward, which can evaluate the learning performance and regulate the learning mode of next phase. The reformed BP is able to converge faster and more stably, and is able to avoid local minimum more easily. To verify the validity of Phase Evaluation, it is used in the experiment of forecasting and analyzing stock price. In the experiment,fitting the curve of stock price is given up but a new method-fitting the probability of expected income - rate is introduced. The results show that Phase Evaluation has better performance than traditional BP, and can improve operability of stock investment and gain preferable annual - income - rate with the help of fitting probability method.
作者 李桢 徐凌宇
出处 《计算机仿真》 CSCD 2006年第12期276-280,共5页 Computer Simulation
基金 国家科技攻关项目(2004-BA608B-030303 2001-BA608B-0808) 上海市E研究院(2003-1) 上海市科技发展基金(205386)
关键词 反向传播神经网络 过饱和 局部极小值 股价预测 BP - NET Supersaturation Local minimum Phase evaluation
  • 相关文献

参考文献11

  • 1MartinTHagan.神经网络设计[M].北京:机械工业出版社,2002.197-235.
  • 2马正华,薛国新.BP神经网络训练算法的改进[J].江苏理工大学学报(自然科学版),2000,21(1):79-82. 被引量:16
  • 3V P Plagianakos and M N Vrahatis.Training Neural Networks with Threshold Activation Functions and Constrained Integer Weights[C].Proceedings of the IEEE-INNS-ENNS International Joint Conference,July 2000,5:161-166.
  • 4梁艳春.关于激励函数可调的人工神经网络模型的注记[J].计算机学报,1999,22(12):1335-1336. 被引量:2
  • 5Gwo-Ching Liao and Ta-Peng Tsao.Integrated genetic algorithm-tabu search and neural fuzzy networks for short-term load forecasting[C].Power Engineering Society General Meeting,June IEEE 2004,1:1082-1087.
  • 6Wen Jin,ZhaoJia Li,LuoSi Wei and Han Zhen.The improvements of BP neural network learning algorithm[C].WCCC-ICSP 2000.5th International Conference,Aug 2000,3:1647-1649.
  • 7Pan Hao,JingLing Yuan and Luo Zhong.Probing modification of BP neural network learning-rate[C].Machine Learning and Cybernetics Proceedings.International Conference,Nov.2002,1:307-309.
  • 8张健,陈勇,夏罡,何永保.人工神经网络之股票预测[J].计算机工程,1997,23(2):52-55. 被引量:24
  • 9梁夏.具有自纠错功能的人工神经网络在股票滚动预测上的应用[J].计算机应用研究,1999,16(1):76-80. 被引量:8
  • 10Antonio Glaria-Bengoechea.Stock Market indeces in Santiago de Chile:forecasting using neural networks[C].Neural Network International Conference,IEEE.June 1996,4:2172-2175.

二级参考文献13

共引文献134

同被引文献18

  • 1丁圣,高风.小波神经网络在股票平均线交易规则中的应用[J].计算机仿真,2006,23(11):259-262. 被引量:3
  • 2周世昊,林苍祥,倪衍森.基于遗传算法和神经网络的新股上市价格预测法[J].计算机工程,2007,33(22):9-11. 被引量:12
  • 3RSharda,R B Patil. A connectionist approach to time series prediction:an empirical test[J].Journal of Intelligent Manufacturing,1992,(01):317-323.
  • 4L Kryzanowski,M Galler,D W Wright. Using artificial neural networks to pick stocks[J].Financial Analysts Journal,1993,(02):21-27.
  • 5R R Trippi,E Turban. Neural networks in finance and investing using artificial intelligence to improve real-world performance[M].Chicago:Probus Company,1993.
  • 6B A Jain,B N Nag. Artificial neural network models for pricing initial public offerings[J].Decision Sciences,1995,(03):283-302.
  • 7G Montagna. Pricing derivatives by path in integral and neural network[J].Physical A,2003,(02):189-195.
  • 8S ABillings. Radial basis function network configuration using genetic algorithms[J].Neural Networks,1995,(06):877-890.
  • 9R SSexton,R E Dorsey,J D Jihnson. Toward global optimization for artificial neural networks:a comparison of the genetic algorithm and back propagation[J].Decision Support Systems,1998,(02):171-185.doi:10.1016/S0167-9236(97)00040-7.
  • 10M Seeger. Gaussian processes for machine learning[J].International Journal of Neural Systems,2004,(02):69-106.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部