期刊文献+

中心或反中心对称线性方程组的缩减算法 被引量:3

On the Reducibility of Centrosymmetric and Skew Centrosymmetric Linear Algebraic Equations
下载PDF
导出
摘要 推广了文[1,2]的概念,系统地叙述了中心对称和反中心对称矩阵的性质,导出了一类求解系数矩阵为中心对称和反中心对称线性方程组及超定方程组的缩减算法。这类算法可节省70%-75%的计算量。 The concepts in References 1 and 2 are broadened and the properties of the centrosymmetric and skew centrosymmetric matrices are exploited in detail. By using these properties, the author have derived a class of reducible algorithms to solve the system of linear algebraic equations with centrosymmetric or skew centrosymmetric coefficient matrices, which can reduce the computational effort and computer storage up to 70-75 percent as compared with the ordinary method.
出处 《南京航空航天大学学报》 CAS CSCD 1996年第5期599-607,共9页 Journal of Nanjing University of Aeronautics & Astronautics
基金 航空科学基金
关键词 工程计算 线性方程组 超定方程组 缩减法 engineering computation linear equations over determined systems centrosymmetric skew centrosymmetric reducibility
  • 相关文献

参考文献3

  • 1王鑫伟,力学进展,1995年,25期,232页
  • 2陈文,Proc of the 1st Pan.pacific conference on computional engineering,1993年
  • 3王鑫伟,J Sound & Vibration,1993年,162卷,3期,566页

同被引文献18

  • 1熊汉.迭代方法求解矩阵全部特征值问题[J].云南民族大学学报(自然科学版),2005,14(2):159-162. 被引量:1
  • 2彭振赞.几类矩阵扩充问题和几类矩阵方程问题[D].长沙:湖南大学数学系,2003.
  • 3徐树方,高立,张耳文,等.数值线性代数[M],北京:北京大学出版社,2005:1.
  • 4彭振赟.几类矩阵扩充问题和几类矩阵方程问题[D].长沙:湖南大学数学系,2004.
  • 5FASSBENDER H,IKRAMOV K D.SYMMLQ-like procedure for Ax=b where A is a special normal matrix[J].Calcolo,2006,43(1):17-37.
  • 6WEI Zeng-xin,YAO Sheng-wei,LIU Li-ying.The convergence properties of some new conjugate gradient methods[J].Appl Math Comput,2006,183(2):1341-1350.
  • 7KAABI A.Preconditioned global FOM and GMRES methods for solving Lyapunov matrix equations[J].Appl Math Sci,2009,3(11):519-531.
  • 8XIE Dong-xiu,HU Xi-yan,ZHANG Lei.The solvability conditions for inverse eigenproblem of symmetric and anti-persymmetric matrices and its approximation[J].Numer Linear Algebra Appl,2003,10(3):223-234.
  • 9XIE Dong-xiu,SHENG Yan-ping,HU Xi-yan.The least-squares solutions of inconsistent matrix equation over symmetric and antipersymmetric matrices[J].Appl Math Lett,2003,16(4):589-598.
  • 10XIE Dong-xiu,SHENG Yan-ping.Inverse eigenproblem of anti-symmetric and persymmetric matrices and its approximation[J].Inv Probl,2003,19(1):217-225.

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部