摘要
选择三参量固体模型描述土体的粘弹性本构关系,利用半空间体内部受竖向集中力的Mindlin弹性解,根据粘弹性理论中的准静态弹性-弹粘性对应原理,推导了竖向力作用在粘弹性半无限土体内部的理论解。通过对应力和位移解答进行Laplace逆变换,给出了应力与位移的时域解。作为解答的应用,建立了粘弹性半无限体内部矩形面积上作用有三角形分布、均匀分布荷载时的粘弹性沉降计算公式。为了便于计算与工程应用,根据粘弹性理论解编制了计算程序。结果验证和实例分析表明,文中理论解是正确的,并为工程实际应用提供了理论依据。
Based on Mindlin solutions for elastic half-space and the corresponding principle in viscoelastic theory,the viscoelastic solutions of semi-infinite soil subjected to vertical force are derived via the Laplace transform.By means of viscoelastic solution of vertical displacement,the settlements of the center and corner point of a flexible rectangular foundation under homogeneously distributed inner load are systematically inferred.The numerical results indicate the feasibility and practicability of the new approach.
出处
《应用力学学报》
EI
CAS
CSCD
北大核心
2006年第4期547-554,共8页
Chinese Journal of Applied Mechanics
关键词
粘弹性
半空间
对应原理
LAPLACE变换
深基础
<Keywords viscoelasticity,half-space,correspondence principle,laplace transform,deep foundation.