摘要
To determine the crustal structure in central Tibet, we used teleseismic waveform data recorded by 18 stations in the INDEPTH-Ⅲ seismic array across the central Tibet from the central Lhasa terrane to the central Qiangtang terrane. The S-wave velocity structures beneath stations are determined by inverting the stacked radial receiver function using the GA method. The first order features in the receiver function are modeled. Our results show that the Moho in Qiangtang is about 8 km shallower than that in Lhasa terrane along the INDEPTH-Ⅲ profile. It maybe suggests the northward subduction of the Lhasa mantle lid beneath the Qiangtang terrane is affected by the India-Asia collision. We conclude that there exist low velocity zone in the middle crust across the northern Lhasa and Qiangtang terrane, which can be related to the high temperature upper mantle beneath that.
To determine the crustal structure in central Tibet, we used teleseismic waveform data recorded by 18 stations in the INDEPTH-Ⅲ seismic array across the central Tibet from the central Lhasa terrane to the central Qiangtang terrane. The S-wave velocity structures beneath stations are determined by inverting the stacked radial receiver function using the GA method. The first order features in the receiver function are modeled. Our results show that the Moho in Qiangtang is about 8 km shallower than that in Lhasa terrane along the INDEPTH-Ⅲ profile. It maybe suggests the northward subduction of the Lhasa mantle lid beneath the Qiangtang terrane is affected by the India-Asia collision. We conclude that there exist low velocity zone in the middle crust across the northern Lhasa and Qiangtang terrane, which can be related to the high temperature upper mantle beneath that.
基金
National Natural Science Foundation of China (40274029) and Joint Seismological Science Foundation of China (105096).