摘要
Road extraction plays an important role in many applications such as car navigation, but the manual extraction of roads is a laborious, tedious task. To speed the extraction of roads, an approach based on particle filtering to extract automatically roads from high resolution imagery is proposed. Particle filtering provides a statistical framework for propagating sample-based approximations of posterior distributions and has almost no restriction on the ingredients of the model. We integrate the similarity of grey value and the edge point distribution of roads into particle filtering to deal with complex scenes. To handle road appearance changes the tracking algorithm is allowed to update the road model during temporally stable image observations. A fully automatic initialization strategy is used. Experimental results show that the proposed approach is a promising and fully automatic method for extracting roads from images, even in the presence of occlusions.
Road extraction plays an important role in many applications such as car navigation, but the manual extraction of roads is a laborious, tedious task. To speed the extraction of roads, an approach based on particle filtering to extract automatically roads from high resolution imagery is proposed. Particle filtering provides a statistical framework for propagating sample-based approximations of posterior distributions and has almost no restriction on the ingredients of the model. We integrate the similarity of grey value and the edge point distribution of roads into particle filtering to deal with complex scenes. To handle road appearance changes the tracking algorithm is allowed to update the road model during temporally stable image observations. A fully automatic initialization strategy is used. Experimental results show that the proposed approach is a promising and fully automatic method for extracting roads from images, even in the presence of occlusions.