期刊文献+

一种新型地下管线方位测量与重建方法 被引量:7

A New Method for Measuring and Reconstructing Position of Underground Pipelines
下载PDF
导出
摘要 在非开挖管道的探测中,由于管线的绝对位置难以测量,管道中心线的形状重建是一个关键性问题.提出了一种根据管道中心线在离散点上切线的空间方向角进行平面和空间形状重建的方法,通过两相邻离散点之间的空间位置关系,建立递推方程,以此将管道中心线形状重建出来.通过仿真算例验证该方法的重建误差在2%以内.同时也介绍了基于此测量方法的地下管线检测系统中传感头的设计,并进行了相应的实验,获得了良好的效果. In the detection of trenchless pipelines, reconstruction of the pipe's axis is a key problem. This paper presents a fitting method for both planar and spatial curves using directional angles of tangents at discrete sampling points on the curve. Based on the relative positions of two adjacent points, iterative equations are established, and by iteration the entire curve is obtained. Simulation shows that the fitting error is within 2 %. Design of the sensor head in the measuring system is also introduced based on the reconstruction method. Experimental results show that it works properly.
出处 《上海大学学报(自然科学版)》 CAS CSCD 北大核心 2006年第6期551-556,共6页 Journal of Shanghai University:Natural Science Edition
基金 国家自然科学基金资助项目(50475182) 上海市重大科技攻关资助项目(04dz12011) 上海市第二期重点学科资助项目(Y0102)
关键词 地下管线探测 形状重建 切线方向角 underground pipeline detection shape reconstruction tangent directional angle
  • 相关文献

参考文献6

  • 1PUTFIPIPATKAJORN A.A new method of pipeline detection in sonar imagery using self-organize maps[C]// IEEE Conference on Intelligent Robotics and System.2003:541-546.
  • 2BAIK H S.A decision support system for horizontal directional drilling[J].Tunnelling and Underground Space Technology,2003,18:99-109.
  • 3LUEKE J S.Application of simulation in trenchless renewal of underground urban infrastructure[C]// Winter Simulation Conference.1999:929-939.
  • 4TAUBIN G,RONFARD R.Implicit simplicial models for adaptive curve reconstruction[J].Transactions on Pattern Analysis and Machine Intelligence,1996,18(3):324-332.
  • 5朱浩,方宗德,胡鑫.离散数据点的B样条曲线精确拟合[J].机械科学与技术,2000,19(z1):119-121. 被引量:11
  • 6陈建军,沈林勇,钱晋武,吴家麒.已知离散点曲率的曲线拟合递推方法[J].上海大学学报(自然科学版),2003,9(2):123-126. 被引量:13

二级参考文献5

  • 1[1]Banks M J. Real Time Spline Curves from Interactively Sketched Data [J]. IEEE Comput. Graphics Appl. May,1992:60~68
  • 2[2]Provilids. Curves Fitting with Conic Splines [J]. ACM Trans. Graphics, 2,1983 . 1 ~ 31
  • 3[3]Piegl 1. Interactive Data Interpolation by Rational Bezier Curves [J]. IEEE Comput. Graphics Appl. Apr, 1987: 45 ~58.
  • 4[4]L.S. Curve Fitting with Bezier Cubics[J]. Graphics Model and Image Preocessing. 1996,58:223~232
  • 5[5]Medioni G, et al. Coner Detection and Curve Representation Using Cubic B-spline[J]. CVGIP 1987,13: 267~ 278

共引文献22

同被引文献37

引证文献7

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部