期刊文献+

线性传输方程满足3个守恒律的差分格式 被引量:7

A Finite Difference Scheme for Linear Advection Equation Satisfying Three Conservation Laws
下载PDF
导出
摘要 考虑单个线性传输方程,对其设计了一种满足3个守恒律的差分格式.此格式为3阶Godunov型的,用的是分片2次重构,重构函数的系数由3个守恒量来确定.虽然微分方程是线性的,但所设计的格式是非线性的.数值实验结果表明,此格式是非线性稳定的,并且对长时间的数值模拟有很好的保结构性质. This paper is concerned with scalar linear advection equation. A difference scheme satisfying three conservation laws is proposed, which is of the third-order Godunov type with piecewise parabolic reconstruction. Coefficients of the reconstructed function in each grid are determined by three conservation quantities. Although the equation is linear, the proposed scheme is nonlinear. Numerical experiments show that the scheme is nonlinearly stable and has good structure-preserving property in long-time numerical simulations.
机构地区 上海大学理学院
出处 《上海大学学报(自然科学版)》 CAS CSCD 北大核心 2006年第6期588-592,598,共6页 Journal of Shanghai University:Natural Science Edition
基金 国家自然科学基金资助项目(10171063)
关键词 线性传输方程 守恒律 网格平均 函数重构 linear advection equation conservation laws cell average reconstruction
  • 相关文献

参考文献9

  • 1LEVEQUE R J.Finite volume methods for hyperbolic problem[M].Cambridge:Cambridge University Press,2002:64-85.
  • 2SWEBY P K.High resolution schemes using flux limiters for hyperbolic conservation laws[J].SIAM J Numer Anal,1984,21:995-1011.
  • 3HARTEN A.High resolution schemes for hyperbolic conservation laws[J].J Comput Phys,1983,49:357-393.
  • 4HARTEN A,OSHER S.Uniformly high-order accurate nonoscillatory scheme Ⅰ*[J].SIAM J Numer Anal,1987,24:279-309.
  • 5HARTEN A,ENGQUIST B,OSHER S,et al.Uniformly high order accurate essentially non-oscillatory scheme,Ⅲ[J].J Comput Phys,1987,71:231-303.
  • 6JIANG G S,SHU C W.Efficient implementation of weighted ENO schemes[J].J Comput Phys,1996,126:202-228.
  • 7SHU C W,OSHER S.Efficient implementation of essentially non-oscillatory shock-capturing schemes,Ⅱ[J].J Comput Phvs,1989,83:32-78.
  • 8李红霞,茅德康.单个守恒型方程熵耗散格式中熵耗散函数的构造[J].计算物理,2004,21(3):319-326. 被引量:9
  • 9崔艳芬,茅德康.一个解KdV方程的满足两个守恒律的差分格式[J].应用数学与计算数学学报,2005,19(2):15-22. 被引量:8

二级参考文献23

  • 1李红霞,茅德康.单个守恒型方程熵耗散格式中熵耗散函数的构造[J].计算物理,2004,21(3):319-326. 被引量:9
  • 2Colella P, Woodward P R. The piecewise-parabolic method (PPM) for gas dynamical simulation [J]. J Comput Phys, 1984,54:174 -201.
  • 3Harten A. High resolution schemes for hyperbolic conservation laws [J] .J Comput Phys, 1983,49:357 - 393.
  • 4Harten A, Osher S. Uniformly high-order accurate nonoscillatory scheme I* [J]. SIAM J Numer Anal, 1987,24:279 - 309.
  • 5Harten A, Engquist B, Osher S, Chakravarthy S R. Unifomly high order accurate essentially non-oscillatory schemes, Ⅲ [J] .J Comput Phys, 1987,71: 231 - 303.
  • 6Harten A. ENO schemes with subcell resolution [J]. J Comput Phys, 1987,83:148- 184.
  • 7Jiang G, Shu C. Efficient implementation of weighted ENO schemes [J] .J Comput Phys, 1996,126:202 - 228.
  • 8LeVeque R J. Numerical Methods for Conservation Laws [M] .Birkhauser-velage, Basel, Boston,Berlin,1990.
  • 9Lie K, Noelle S. On the artificial comperession method for sceond-order nonoscillatory central difference schemes for systems of conservation laws [J] .SIAM J Sci Comput,2003,24:1157- 1174.
  • 10Mao D. Entropy satisfaction of a conservative shock tracking method [J] .SIAM J Numer Anal, 1999,36:529- 550.

共引文献13

同被引文献32

引证文献7

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部