期刊文献+

基于小波变换的多尺度独立元分析方法及应用

Multi-scale Independent Component Analysis Based on Wavelet Transform and Its Application
下载PDF
导出
摘要 实际过程数据大多不满足正态分布的条件,且大多数过程监控方法对数据进行分析的尺度较为单一.为此,本文提出了一种基于小波变换的多尺度独立元分析的过程监控方法.该方法对初始数据进行多尺度细化分析,并根据信息最大化准则提取独立元信号,在数据的低维子空间上对过程进行实时监控.通过对TE过程的仿真研究,表明了该方法的有效性.* According to the condition that most practical process data can not meet the needs of normal distribution and many process monitoring methods analyze data at a single scale, this paper presents an improved process monitoring method named as multi-scale independent component analysis (MSICA) based on wavelet transform. The method analyzes initial data at different scales carefully, extracts independent signals according to the information maximization criterion, and monitors the process in real time in a low-dimensional subspace of data. Results of the simulation in Tennessee-Eastman (TE) process verify the efficiency of the method.
作者 吴昌应 刘飞
出处 《信息与控制》 CSCD 北大核心 2006年第6期781-786,共6页 Information and Control
基金 教育部科学技术研究重点资助项目(105088) 江苏省高校高新技术产业发展项目(JH02-98)
关键词 小波变换 多尺度 独立元分析 过程监控 TE过程 wavelet transform multi-scale independent component analysis process monitoring TE (Tennessee-Eastman) process
  • 相关文献

参考文献10

  • 1Kano M,Nagao K,Hasebe S,et al.Comparison of statistical process monitoring methods:Application to the Eastman challenge problem[J].Computers and Chemical Engineering,2000,24(2):175 ~181.
  • 2Misra M,Yue H Y,Qin S J,et al.Multivariate process monitoring and fault diagnosis by multi-scale PCA[J].Computers and Chemical Engineering,2002,26(9):1281 ~1293.
  • 3Johnson R A,Wichern D W.Applied Multivariate Statistical Analysis[M].New York:Prentice Hall,2002.
  • 4Bakshi B R.Multiscale PCA with application to multivariate statistical process monitoring[J].AIChE Journal,1998,44 (7):1596 ~ 1610.
  • 5Hyvarinen A.Fast and robust fixed-point algorithms for independent component analysis[J].IEEE Transactions on Neural Networks,1999,10(3):626 ~634.
  • 6李建平,杨万年.小波十讲[M].北京:国防工业出版社,2004.
  • 7Lee J M,Yoo C K,Lee I B.Statistical process monitoring with independent component analysis[J].Journal of Process Control,2004,14(5):467 ~485.
  • 8Wang M P,Jones M C.Kernel Smoothing[M].New York:Chapman & Hall,1995.
  • 9Downs J J,Vogel E F.Plant-wide industrial process control problem[J].Computers and Chemical Engineering,1993,17(3):245 ~ 255.
  • 10段建民.工业系统的故障检测与诊断[M].北京:机械工业出版社,2003.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部