期刊文献+

带扩散的具性别结构的捕食模型分析 被引量:1

Analysis of a diffusive predator-prey model with sex-structure
下载PDF
导出
摘要 建立了带扩散的并且食饵种群具有性别结构的捕食模型,应用特征子空间分解与线性化方法得到了弱耦合的偏微分方程组平衡点局部稳定性的充分条件,进一步利用上、下解方法和构造适当的Lyapunov泛函的方法分析平衡点的全局稳定性,得到了边界平衡点和正平衡点全局稳定的充分条件. In this paper, a diffusive predator-prey model with sex-structure is formulated. The sufficient condition of local asymptotic stability of the equilibria of weakly coupled partial differential equations is obtained by using the characteristic decomposition and lineari'zation method. Moreover, the global asymptotic stability of the equilibria is established by using upper and lower solution method and by constructing a suitable Lyapunov function. And the sufficient condition of global stability of the boundary equilibrium and the positive equilibrium is obtained.
作者 刘佳 周桦
出处 《扬州大学学报(自然科学版)》 CAS CSCD 2006年第4期12-16,共5页 Journal of Yangzhou University:Natural Science Edition
基金 江苏省教育厅自然科学基金资助项目(05KJB110154) 江苏省自然科学基金资助项目(BK2006064)
关键词 性别结构 捕食模型 渐近稳定 反应扩散系统 sex-structure predator-prey model asymptotical stable reaction-diffusion systems
  • 相关文献

参考文献7

二级参考文献32

  • 1周桦,甘文珍,林支桂.一类具时滞和扩散的传染病模型[J].扬州大学学报(自然科学版),2005,8(2):4-7. 被引量:3
  • 2Lou Y., Necessary and sufficient condition for the existence of positive solutions of certain cooperative system,Nonlinear Anal., 1996, 26(6): 1019-1095.
  • 3Lou Y., Ni W. M., Diffusion, vs, cross-diffusion: an elliptic approach, J. Differential Equations, 1999, 154:157-190.
  • 4RuanW. H., Positive steady-state solutions ofa competing reaction-diffusion system with large cross-diffusion coefficients, J. Math. Anal. Appl., 1996, 197: 558-578.
  • 5Martin R. H., Smith H. L., Abstract functional differential equations and reaction diffusion systems, Trans.Amer. Math. Soc., 1990, 321: 1-44.
  • 6Rankin S. M., Existence and asymptotic behavior of a functional differential equation in Banach space, J.Math. Anal. Appl., 1982, 88: 531-542.
  • 7Travis C. C., Webb G. F., Existence and stability for partial functional differential equations, Trans. Amer.Math. Soc., 1974, 200: 395-418.
  • 8Wu J., Theory and Applications of Partial Functional Differential Equations, New York: Springer-Verlag,1996.
  • 9Lu X., Persistence and extinction ina competition-diffusion system with time delay, Canadian Appl. Math.Quart., 1994, 2: 231-246.
  • 10Pao C. V., Dynamics of nonlinear parabolic systems with time delays, J. Math. Anal. Appl., 1996, 198:751-779.

共引文献51

同被引文献8

  • 1ChenBin,PengRui.COEXISTENCE STATES OF A STRONGLY COUPLED PREY-PREDATOR MODEL[J].Journal of Partial Differential Equations,2005,18(2):154-166. 被引量:3
  • 2YAGI A. Global solution to .some quasilinear parabolic system in population dynamics [J]. Nonlinear Anal, 1993, 21(8) : 603-630.
  • 3KIM I K, LIN Zhi-gui. Coexistence of three species in a strongly coupled elliptic system [J]. Nonlinear Anal, 2003, 55(3): 313-333.
  • 4郁胜旗.一类响应函数依赖于猎物的食物链模型的定性分析[D].徐州:徐州师范大学,2007.
  • 5PANG P Y H, WANG Ming-xin. Qualitative analysis of a ratio-dependent prey-predator system with diffusion [J]. Proc Roy Soc Edinburgh Sect A, 2003, 133(4): 919-942.
  • 6HENRY D. Geometric theory of semilinear parabolic equations [M]// DOLD A, ECKMANN B. Lecture Notes in Mathematics (840). Berlin: Springer-Verlag, 1993: 98-100.
  • 7LIN Chang-shou, NI Wei-ming, TAKAGI I. Large amplitude stationary solutions to a chemotaxis systems [J]. J Dift Eqs, 1988, 72(1): 1-27.
  • 8LOU Yuan, NI Wei-ming. Diffusion, self-diffusion and cross-diffusion [J]. J Diff Eqs, 1996, 131(1): 79-131.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部