摘要
管网水力计算的问题可归结为联立求解连续性方程、能量方程和压降方程.牛顿法是求解非线性方程组的一个经典方法,但当初值选择不好时,有可能不收敛.将新型的仿生算法———蚂蚁算法引入到求解管网数学模型中.利用拟牛顿法与蚂蚁算法相互之间较强的互补性,提出了求解供水管网微观数学模型的新算法———嫁接法.计算表明,嫁接法结合了蚂蚁算法与拟牛顿法各自的优点,计算速度快,效果良好.
The hydraulic calculation of network can come down to compute simultaneous equations of continuity equation, energy equation and pressure equation. The Newton algorithm is a classic method used to solve nonlinear equations. But the equation may not be convergent when the choice of the initial number is unsuitable. In this paper, the new bionic algorithm ant algorithm, is introduced in the network mathematical model. The new algorithm to solve water supply network mathematical model graft algorithm is presented according to the strong complementarities between the Quasi--Newton algorithm and ant algorithm. As a resuit, the graft algorithm integrates the virtues of ant algorithm and Quasi Newton algorithm, and exhibits quick speed and good effect.
出处
《哈尔滨工业大学学报》
EI
CAS
CSCD
北大核心
2006年第11期1903-1905,共3页
Journal of Harbin Institute of Technology
基金
国家"十五"科技攻关资助项目(2002BA107B02)
关键词
供水管网
蚂蚁算法
节点方程
数学模型
water supply network
ant algorithm
continuity equation
mathematical model