期刊文献+

逐日降水量的模拟及其在作物气候风险分析中的应用 被引量:11

Daily Precipitation Simulation and Its Application on Crop Production Climate Risk Analysis
下载PDF
导出
摘要 利用天气发生器(NCC/RCG-WG)模拟了安阳200年的逐日降水序列,并通过对模拟结果与1961—2000年实测资料的对比分析表明,模拟结果的均值及概率分布与实际值接近,可用于进一步对降水资源与风险进行分析。对棉花与降水关系的分析表明,华北地区棉花生长季降水满足程度较高,平均能满足棉花生长需要。生育初期的6月干旱出现的机率大,7月和8月水分满足程度高但也有少数年份会出现干旱或者涝渍,9月和10月以干旱为主。对于小麦生产,华北地区降水规律与小麦需求不匹配,除10月和11月基本能够满足外,其余各月均不能满足需要,且缺水严重,生长季降水只能满足小麦需水量的1/3,生长关键期的4月和5月的降水量只能满足需水量的20%~25%。华北地区的小麦生产生长季缺水,按目前的播种面积,华北地区小麦生长季年均麦田缺水300亿m^3以上。 Daily precipitation serial data of 200 years is created by weather generator and is used to compared with history data of 40 years from 1961 to 2000. The result shows that the mean precipitation and probability distribution of simulation value is close to actual value, so the simulated precipitation serial data can be used to analysis the risk of rainfall to crop production. The relationship between rainfall and cotton growth shows that the precipitation is usually sufficient to cotton growth during growing season, but it presents usually drought in June, September and October. The precipitation is usually sufficient to cotton growth in July and August, but few years it also presents drought or waterlogging. The raifall of North China does not fit to wheat growth. The precipitation is not usually sufficient to wheat growth during growing season except October and November, and the precipitation is only supply one third of requiring water during growing season and 20% to 30% in key period April and May. The water is usually shortage during growth season in North China. According to areain 2003, the water of wheat field is shortage of more than 30 billion m3 during growth season in North China.
出处 《华北农学报》 CSCD 北大核心 2006年第B11期206-212,共7页 Acta Agriculturae Boreali-Sinica
基金 国家自然科学基金资助项目(40575057 30170535) 瑞典STINT基金会资助项目
关键词 天气发生器 降水量 作物生产风险 棉花 小麦 Weather generator Precipitation Crop production risk Cotton Wheat
  • 相关文献

参考文献7

二级参考文献32

  • 1[1]Gabriel R. A Markov chain model for daily rainfall occurrence in Tel Aviv Israel. Q. J. R. Met. Soc., 1962, 88: 90-95.
  • 2[2]Bailey N T J. The Elements of Stochastic Processes. Wiley: New York, 1964.
  • 3[3]Richardson C. Stochastic simulation of daily precipitation, temperature, and solar radiation. Water Resources Research,1981, 17: 182-190.
  • 4[4]Richardson C W, Wright D A. WGEN: a model for generating daily weather variables. USDA-ARS, ARS-8, 1984.
  • 5[5]Semenov M A, Brooks R J, Barrow E M et al. Comparison of the WGEN and LARS-WG stochastic weather generators for diverse climates. Climate Research, 1998, 10: 95-107.
  • 6[6]Semenov M A, Brooks R J. Spatial interpolation of the LARS-WG stochastic weather generator in Great Britain. Climate Research, 1999, 11: 137-148.
  • 7[7]Richardson C W. Weather simulation for crop management models. Trans. ASAE, 1985, 28: 1602-1606.
  • 8[8]Wight J R, Hanson C L. Use of stochastically generated weather records with rangeland simulation models. Journal of Range Management, 1991, 44: 282-285.
  • 9[9]Semenov M A, Porter J R. Climatic variability and the modelling of crop yields. Agricultural and Forest Meteorology,1995, 73: 265-283.
  • 10[10]Wallis T W R, Griffiths J F. Simulated meteorological input for agricultural models. Agricultural and Forest Meteorology, 1997, 88: 241-258.

共引文献59

同被引文献158

引证文献11

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部