期刊文献+

陶瓷/金属梯度热障涂层的制备及性能评价 被引量:1

Fabrication and characterization of ceramic/metal gradient thermal barrier coating
下载PDF
导出
摘要 为了评价陶瓷/金属梯度热障涂层的性能,设计了4种涂层方案和2种基体材料(1Cr18Ni9Ti和2Cr13).利用单枪单送粉器成功地制备了线性梯度涂层.通过观察涂层的微观结构、测量涂层的抗热震性能和热残余应力来评价涂层的性能.利用扫描电镜对各种陶瓷涂层的微观结构进行了观察和分析,利用X射线能谱分析得到了陶瓷梯度涂层试样中的不同区域的衍射图.热震试验表明,梯度涂层比非梯度涂层具有更好的抗热震性能.采用钻孔法对不同涂层方案进行了残余应力的测量,结果表明,压应力出现在1Cr18Ni9Ti基体材料上,而拉应力出现在2Cr13基体材料上. Four coating schemes and two substrate materials were designed to evaluate the characteris tics of the ceramic/metal gradient thermal barrier coating. The gradient coating was well prepared by the plasma spray with the single torch and the single feeder. The coating performance was evaluated by observing microstructure, measuring thermal shock resistance and thermal residual stress. The coating microstructure was observed by scanning electron microscope (SEM). Diffractive peaks for the gradient coating were got at different zones by X-ray spectroscopy (XRS). The thermal shock ex periment shows that the thermal shock resistance property of the gradient coating is better than that of the non gradient coating. The measurements of thermal residual stresses in different coating schemes were carried out by the hole-drilling method;the results show that the compressional stress appears on 1Cr18Ni9Ti substrate and the tensile stress presents on 2Cr13 substrate.
出处 《海军工程大学学报》 CAS 北大核心 2006年第6期75-78,共4页 Journal of Naval University of Engineering
关键词 热障涂层 功能梯度材料 制备 性能评价 thermal barrier coating functional gradient material fabrication characterization
  • 相关文献

参考文献2

二级参考文献25

  • 1[1]Tokita M. Development of large-size ceramic/metal bulk FGM fabricated by spark plasma sintering[J]. Materials Science Forum, 1999, 308: 83- 88.
  • 2[2]Liew K M, He X Q, Kitipornchai S, et al. Finite ele ment method for the feedback control of FGM shells in the frequency domain via piezoelectric sensors and actuators[J]. Computer Methods in Applied Mechanics and Engineering, 2004, 193(3): 257-273.
  • 3[5]Huang J H, Fadel G M, Blouin V Y, et al. Bi-objective optimization design of functionally gradient materials[J]. Materials and Design, 2002, 23(7): 657-666.
  • 4[7]Hedia H S, Mahmoud N A. Design optimization of functionally graded dental implant [J]. Bio-Medical Materials and Engineering, 2004, 14(2): 133- 143.
  • 5[8]Kawaguchi T, Sakamoto M, Tanaka T, et al. Quasithree-dimensional numerical simulation of spouted beds in cylinder[J]. Powder Technology, 2000, 109(1): 3 -12.
  • 6[9]Becker J, Cannon R M, Ritchie R O. Statistical fracture modeling: Crack path and fracture criteria with application to homogeneous and functionally graded materials[J]. Engineering Fracture Mechanics, 2002, 69(14): 1521 - 1555.
  • 7[14]Uemura S, Sohda Y, Kude, Y, et al. Preparation and evaluation of SiC/C functionally gradient materials by chemical vapor deposition[J]. Journal of the Japan Society of Powder and Powder Metallurgy, 1990, 37(2): 275-282.
  • 8[15]Ge C C, WuAH, LingYH, et al. New progress of ceramic-based functionally graded plasma-facing materials in China [J]. Key Engineering Materials, 2002, 224:459 - 464.
  • 9[16]Sasaki Makoto, Hirai Toshio. Fabrication and properties of functionally gradient materials[J]. Journal of the Ceramic Society of Japan, International Edition, 1991, 99(10): 970- 980.
  • 10[17]JungYG, Park SW, ChoiSC. Effect of CH4 and H2 on CVD of SiC and TiC for possible fabrication of SiC/TiC/C FGM[J]. Materials Letters, 1997, 30 (5): 339 - 345.

共引文献38

同被引文献3

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部