期刊文献+

基于DRNN的直接多步自适应预测器设计 被引量:1

Design of Direct Multi-step Adaptive Predictor Based on DRNN
下载PDF
导出
摘要 介绍了一种基于对角回归神经网络(DRNN)的直接多步自适应预报器的设计方法。由于其有特殊记忆能力组成单元和特殊的组织结构形式,这种预报器可以在线通过对一个动态系统的输入输出样本的学习,自动建立这个动态系统的模型,而无需事先了解该系统的参数。因此,该预报器可以根据系统过去的输入输出样本和当前可以测量到的系统输入,来获得系统未来的输出值。本文首先介绍了这种预报器模型的结构和输出输入的映射关系,然后给出了一个用于系统预测分析的预测器的具体设计过程并给出一些仿真实验结果,介绍了这种预报模型在船舶机舱智能监控系统中的具体应用。 A new direct multi-step adaptive predictor based on the diagonal recurrent neural network is presen- ted. The new predictor does not require deciding any system parameter in advance. Because of the special structure and the retentive units, the system parameters can be identified and modified on line through the learning from a time series of a real dynamic process. So the predictor could obtain the future output value of the analyzed system according to its past output value and some measurable input signals. The structure of the predictor and its map relation are described. Then a prediction module is designed for trend analysis. Some experimental results with its application in the intelligent monitoring system of marine engine room are provided.
机构地区 上海海事大学
出处 《江苏科技大学学报(自然科学版)》 CAS 北大核心 2006年第6期62-66,共5页 Journal of Jiangsu University of Science and Technology:Natural Science Edition
关键词 自适应预报器 人工神经网络 时间序列 监控系统 adaptive predictor artificial neural networks time series monitoring system
  • 相关文献

参考文献4

  • 1[1]LI J,MINDYKOWSKI J.Development of engine room monitoring and alarm system[C]∥Proceedings of the 1997 International Marine Electrotechnology Conference and Exhibition IMECE'97,China:Shanghai,1997:131-135.
  • 2[2]TANG Tianhao,XIONG Min,LIU Yijian,et al.ANN-based nonlinear time series models in fault detection and prediction[C]∥Proceedings of IFAC CAMS'98,Japan:Fukuoka,1998:335-340.
  • 3[3]CONNOR J T.Recurrent neural networks and robust time series prediction[J].IEEE Trans.on Neural Networks,1994,5 (2):240-254.
  • 4[4]DOU Jinsheng,The research of an intelligent monitoring system based on FCS for marine engine room[D].Shanghai Maritime University,2000.

同被引文献9

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部