期刊文献+

李代数L(Z,f,δ)的特殊性质 被引量:24

Special Property of Lie Algebra L(Z,f,δ)
下载PDF
导出
摘要 研究一类特殊的无限维李代数.利用系数矩阵和极大项,证明了这类李代数是半单李代数且没有二维交换子代数. In this paper, a special infinite dimensional Lie algebra is studied. Using the notion of coefficient matrix and maximal element. We prove that the Lie algebra is semi-simple and it has no abelian two dimensional subalgebra.
出处 《数学进展》 CSCD 北大核心 2006年第6期707-711,共5页 Advances in Mathematics(China)
基金 国家自然科学基金(No.10371036) 湖南省教育厅重点项目(No.02A024)
关键词 中心 半单李代数 极大项 系数矩阵 center semi-simple Lie algebra maximal element coefficient matrix
  • 相关文献

参考文献6

  • 1[2]Lu.C.,Wan.Z.,On the minimal number of generators of the Lie algebra g(A),J.Algebra,1986,101:470-472.
  • 2[3]Benkart,G.,Zelmanov,E.,Lie algebras graded by finite root systems and intersection matrix algebras,Invent.Math.,1996,126:1-45.
  • 3[4]Marshall,Osborn,J.,Zhao Kaiming,Infinite dimensional Lie algebras of type L,Comm.Algebra,2003,31(5):2445-2469.
  • 4[5]Osborn,J.M.,New simple infinite dimensional Lie algebras of characteristic O,J.Algebra,1996,185:820-835.
  • 5[6]Osborn,J.M.,K.Zhao,Generalized poisson bracket and Lie algebras of type H in characteristic 0,Invent.Math.,1999,230:107-143.
  • 6[7]Passman,D.,Simple Lie algebra of Witt Type,J.Algebra,1998,206:682-692.

同被引文献63

  • 1余德民,卢才辉.Virasoro李代数的子代数若干结果[J].数学学报(中文版),2006,49(3):633-638. 被引量:19
  • 2Lothaire M., Combinations on Words [M], Cambridge: Cambridge University Press, 1983.
  • 3Reutenauer C., Free Lie Algebras [M], Oxford: Clarendon Press, 1993.
  • 4Bocklandt R. and Le Bruyn L., Necklace Lie algebras and noncommunicative symplectic geometry [J], Math. Z., 2002, 240(1):141-167.
  • 5Guo J. Y. and Martinez Villa R., Algebra pairs associated to Mckay quivers [J], Comm. in Algebras, 2002, 30(2):1017-1032.
  • 6Peng Liangang, Lie algebras determined by finite Auslander Reiten quivers [J], Comm. in Algebras, 1998, 27(1):235-258.
  • 7Christophoridou C. and Kobotis A., The characteritic elements of special nilpotent Lie algebras of dimension ten [J]. Balkan J. Geom. Appl., 1999, 4(1):9- 17.
  • 8Y.Su.,K.Zhao.Generalized virasoro and super-virasoro Algebras and modules of the intermediate series[J].Algebra,2002,252:1-19.
  • 9Lu.C.,Shao.W.Centralizer of L-Shape Lie Algebra,Science in China (Series.4[J].2004,34(2):185-191.(in Chinese).
  • 10Lu.C.,Wan.Z.One the Minimal Number of Generators of the Lie Algebra(A)[J].Algebra.1986,101:470-472.

引证文献24

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部